6.622 Power Electronics
 Prof. David Perreault Lecture 37 - Resonant Converters: Matching Networks

1 Matching Networks

In power conversion we often want to scale voltage and current to "match" a load network to a source.
One way to change a load impedance value is with a transformer

Voltage steps up by N
Current steps down by N
\Rightarrow Impedance $\frac{V}{I}$ by N^{2} !

If we are concerned with sinusoidal waveforms over a narrow frequency range (as in resonant converters, RF communications, etc.), we can use a reactive matching network to effect impedance transformation.

Simple example: Suppose we have a known load R_{p}, and want to transform it to appear as a smaller resistor R_{s}. At a single frequency ω, we can do this with an LC tank.

Place a capacitor in parallel with R_{p}

$$
\begin{aligned}
Z_{e q 1}= & \frac{R_{p} / j \omega C}{R_{p}+1 / j \omega C}=\frac{R_{p}}{1+j \omega R_{p} C} \frac{1-j w R_{p} C}{1-j w R_{p} C} \\
& =\frac{R_{p}}{1+\left(\omega R_{p} C\right)^{2}}-j \frac{\omega R_{p}^{2} C}{1+\left(\omega R_{p} C\right)^{2}}
\end{aligned}
$$

Now add an inductance in series to eliminate reactive term:

This is called an "L-section" matching network
$Z_{e q, 2} \rightarrow$

$$
Z_{e q, 2}=\frac{R_{p}}{1+\left(\omega R_{p} C\right)^{2}}+j\left[\omega L-\frac{\omega R_{p}^{2} C}{1+\left(\omega R_{p} C\right)^{2}}\right]
$$

- \therefore By picking C, we can make $\operatorname{Re}\left\{Z_{\text {eq }, 2}\right\}=R_{s} @ \omega$ (desired value).
- Picking L, we can make $\operatorname{Im}\left\{Z_{\text {eq }, 2}\right\}=0 @ \omega$ (desired value).
- We effectively transform R_{P} into an apparent resistance R_{s} at a single frequency ω.
- This is achieved through the action of the resonant tank L, C.
- Must know R_{P}, ω in design. Practical transformations are limited by \rightarrow achievable component values, parasitics/losses.

In general, to "step down" resistances, we need two reactances $j X_{P}$ and $j X_{S}$ which have opposite signs, configured as follows:

We may choose how to implement the reactances based on (e.g.)

- How dc, harmonic frequencies, etc. are transformed
- how convenient (or reasonable) the values are
- To "absorb" one or both reactancs into the circuitry

To "step up" R_{s} to a higher value R_{p}, we can use the same resonant network "backwards". Again, we need reactances w/ opposite signs:

These networks work in both directions: If we transform down from R_{p} to R_{s} in one direction, we transform up from R_{s} to R_{p} in the other direction!

Easy ways to identify values: If we want to "reduce" an apparent resistance, place a reactance in parallel with it. To increase, place a reactance in series with it.

Lets look at the values we get in our original example:

$$
Z_{e q, 2}=\frac{R_{p}}{1+\left(\omega R_{p} C\right)^{2}}+j\left[\omega L-\frac{\omega R_{p}^{2} C}{1+\left(\omega R_{p} C\right)^{2}}\right]
$$

To achieve $Z_{e q, 2}=R_{s}$, we require:

$$
R_{s}=\frac{R_{p}}{1+\left(\omega R_{p} C\right)^{2}} \Rightarrow \omega R_{p} C=\sqrt{\frac{R_{p}}{R_{s}}-1}
$$

and

$$
\omega L=\omega R_{p} C \frac{R_{p}}{1+\left(\omega R_{p} C\right)^{2}}=R_{s} \sqrt{\frac{R_{p}}{R_{c}}-1}
$$

$$
\text { or } \frac{\omega L}{R_{s}}=\sqrt{\frac{R_{p}}{R_{s}}-1}
$$

Defining a "transformation Q" Q_{T}

$$
Q_{t} \Delta \sqrt{\frac{R_{p}}{R_{s}}-1}
$$

We need for matching:

$$
\frac{X_{s}}{R_{s}}=\frac{R_{p}}{X_{p}}=Q_{T}
$$

Result only: shown in handout \rightarrow
If we implement one element as an inductor (quality factor $Q_{L}=\frac{\omega L}{R_{L, E S R}}$) and one element as a capacitor (quality factor $Q_{C}=\frac{1}{\omega C R_{C, E S R}}$), we get a matching network efficiency,

$$
\eta \approx 1-\frac{Q_{T}}{Q_{L}}-\frac{Q_{T}}{Q_{C}}
$$

- The larger the transformation ratio, the lower the efficiency!
- Note: The larger the transformation ratio we want, the more narrowband the transformation becomes (high Q).

See Everitt + Anner "Communication Engineering" 3rd Edition p. 412

Moreover, the transformation requires increasingly high Q components to remain efficient.
For limited available size +Q of components or for wider-band operation, we may choose a multi-stage design, e.g.:

e.g., select $R_{c}=\sqrt{R_{1} R_{2}}$

These can be thought of as "back-to-back" L-section networks

- Step R_{1} down to R_{x}
- Step R_{x} up to R_{2}
\Rightarrow L-section networks are broader-band and more efficient than T or Π networks, but are fully determined by the required transformation ratio and frequency.
$\Rightarrow \mathrm{T}+\Pi$ sections allow an additional degree of freedom $\left(R_{x}\right)$, which can be used to:
- provide narrower bandwidth (selectable),
- use more desirable component values,
- control phase shift of waveforms at input and output.

It is also useful to note how variations affect our designs

T and Π networks double invert, so as $R_{1} \uparrow, R_{2} \uparrow$ also

MIT OpenCourseWare
https://ocw.mit.edu

6.622 Power Electronics

Spring 2023
For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

