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6.6220 HW0 Solution ∗ 

Key take-aways 

• Switches and diodes are non-linear devices, 
and the circuits they are part of are time 
varying, so we can’t directly apply our Lin-
ear Time-Invariant “toolbox” to circuits that 
contain them. Instead, we decompose these 
“switching circuits” into stages, where each 
stage is modeled as an LTI circuit that we 
know how to solve. 

• In order to know when uncontrolled switches 
like diodes turn on or of, we can use the 
method of assumed states (MAS). Don’t forget 
that when voltages or currents in the circuit 
change polarity, the state of the diodes in the 
circuit can change. Eventually, you can rely 
on your intuition to quickly assess the state of 
a diode based on the voltage it would have to 
block or the current it would have to conduct. 

• RLC circuits are common in switching circuits, 
and you should be comfortable solving these 
kinds of circuits in the time domain. 

• In some instances, you can arrive at a solution 
quicker by using an energy balance perspective 
rather than a time-domain perspective. 

(a) (1) At t = 0, the switch is closed. What is 
the state of the diode? Use the method of assumed 
states: 
If the diode is on, then the voltage across R at 

t = 0 is Vx. This would mean that there is a current 
through the resistor which fows into the cathode 
of the diode — this is not possible! Therefore, the 
diode must be of at t = 0. An ideal diode is an 
open circuit when it’s of, so our resulting circuit 
is an LC circuit. Write out KVL and KCL, get 
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a (second-order) diferential equation, and solve it. 
The result is of the form 

Vc(t) = A cos(ω0t) + B sin(ω0t) 

icoil(t) = C cos(ω0t) + D sin(ω0t) 

√1where ω0 = . Our initial conditions are 
LC 

Vc(0) = Vx, icoil(0) = 0, and vcoil(0) = Vx (where 
we use the convention that a passive component 
has a voltage polarity such that current fows into 
its positive terminal). Thus, 

Vc(t) = Vx cos(ω0t) 
Vx

icoil(t) = sin(ω0t)
ω0L 

We’re not done! 
We arrived at this LC circuit by assuming that 

the diode was of, which was the case for the capac-
itor voltage being positive. However, our solution 
shows that the capacitor voltage is sinusoidal and 
will become zero at t1 = π/(2ω0). When this hap-
pens, the diode turns on (you can use the MAS here 
to confrm that) and the system becomes a parallel 
RLC circuit with the following state equation: 

d2icoil L dicoil
LC + + icoil = 0 

dt R dt 

Recall from diferential equations that we solve 
this with a “characteristic equation”: 

1 12 s + s + = 0 
RC LC 

which will have two roots. 
We need numerical answers for these right now 

to determine the structure of the solution; plugging 
in, we get s1 = −8954, s2 = −56406. Since both 
of these roots are real, the solution will consist of 
exponentials: 

icoil = Ees1(t−t1) + Fes2(t−t1) 
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where E and F are coefcients to be determined. 
We also could have known that this was the solu-
tion by calculating the parallel RLC quality factorp
Q = R C/L = 0.34 — since the Q is less than 1/2, 
the system is overdamped (exponential solutions). 
Note that even though we “switched” into an 

RLC circuit from the original LC circuit at the in-
stant t = t1, we know that the voltage on a capac-
itor and the current through an inductor cannot 
change instantly. Thus, at t = t1: 

Vx
icoil(t1) = E + F = 

ω0L 
dicoil

Vc(t1) = L = L(Es1 + Fs2) = 0 
dt 

Solving for E and F gives us 

E = +4.808Vx 

F = −0.763Vx 

The system is overdamped so it does not oscil-
late. Since the capacitor voltage at t = t1 is zero, 
it cannot become zero again (the exponential solu-
tion will asymptotically approach zero as t →∞). 
Thus, the diode will remain on. 

The fnal solution, then, is:  
Vx sin(ω0t) ≈ 4.0452Vx sin(22473.3t) t ≤ t1Lω0Ees1(t−td) + Fes2(t−t1) ≈ 

icoil = −8954(t−t1)−4.808Vxe t > t1 −56406(t−t1)0.763Vxe 

where t1 is the time at which Vc falls below zero 
and can be found as t1 = π/(2ω0)=69.9µs. 

(2) 
The coil current initially rises sinusoidally and 

reaches a maximum at t1 after which it experiences 
an overdamped decay to zero. Thus, the maximum 
coil current occurs at t = t1, 

Vx
Imax = = 3640.68 A (1)

ω0L 

Note that the solution to this problem can also 
be determined by conservation of energy. The in-
ductor current reaches its maximum when the ca-
pacitor voltage is zero. At this point, all of the 

energy stored in the capacitor has been transferred 
1 1to the capacitor. Thus, CV 2 = LI2 . Solving2 x 2 max 

for Imax here yields the same solution as above. 

(3) 
As discussed in the solution for Part (1), the sys-

tem oscillates for one quarter cycle before the diode 
turns on, so 

T 1 2π 
t1 = = = 69.9 µs 

4 4 ω0 

(4) 
The system begins with energy stored in the ca-

pacitor and ends in a state of no energy storage 
since the capacitor voltage and inductor current are 
zero. By conservation of energy, all of the initially 
stored energy must be dissipated in the resistor. 
Thus 

1 
Ediss = Estored,initial = CVx 

2 = 72.9 J 
2 

c 
We can repeat Part (1) with an initial capacitor 

voltage of Vx = 450V . The results are Imax = 
1820 A and t1 = 69.9 µs. Note that the timing of 
the diode turning on is independent of the initial 
voltage of the system. The current and voltage 
waveforms scale linearly with the initial conditions. 
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Figure 1: LTspice schematic, which corresponds to 
the circuit diagram for t>0. 

Figure 2: Simulated capacitor voltage, inductor 
current, and diode current waveforms (matching 
analytic solution). 
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