6.6220 HW7 Solutions*

7.1 KPVS 9.6: 3-Phase Bridge Power Factor

3-Phase Bridge

Because the three phases are symmetric, we only need to find the power factor of one phase to find the power factor of the 3-phase bridge. In particular, we'll focus on finding the power factor of source v_{a} with voltage and current waveforms shown in Fig. 1.

To find the power factor, we need to find the average power and the rms voltage and current.

$$
\begin{gathered}
\langle P\rangle=\frac{1}{\pi} \int_{\pi / 6}^{5 \pi / 6} V_{s} \sin (\omega t) I_{d} d(\omega t)=\frac{\sqrt{3}}{\pi} V_{s} I_{d} \\
V_{a, r m s}=\frac{V_{s}}{\sqrt{2}} \\
I_{a, r m s}=\sqrt{\frac{2}{3} I_{d}^{2}}=I_{d} \sqrt{\frac{2}{3}}
\end{gathered}
$$

Power factor for the 3-phase bridge is then

$$
P F_{3 \phi}=\frac{\langle P\rangle}{V_{a, r m s} I_{a, r m s}}=\frac{3}{\pi} \approx 0.955
$$

Single-Phase Bridge

For a single-phase bridge, the circuit and waveforms are shown in Fig. 2.

In this case, our average power and rms voltage and current are

$$
\begin{gathered}
\langle P\rangle=\frac{1}{\pi} \int_{0}^{\pi} V_{s} \sin (\omega t) I_{d} d(\omega t)=\frac{2}{\pi} V_{s} I_{d} \\
V_{r m s}=\frac{V_{s}}{\sqrt{2}} \\
I_{r m s}=I_{d}
\end{gathered}
$$

So, our power factor is

$$
P F_{1 \phi}=\frac{\langle P\rangle}{V_{r m s} I_{r m s}}=\frac{2 \sqrt{2}}{\pi} \approx 0.900
$$

[^0]The 3-phase bridge therefore has a greater power factor than the single-phase bridge.

Figure 1: 3-Phase Bridge (reproduced KPVS Fig. 9.8a)

Figure 2: Single-Phase Bridge

7.2 KPVS 9.2 (a), (b): 12-Pulse Rectifier

We're interested in analyzing different currents in a 12-pulse rectifier with transformer connections as shown in Fig. 3

7.2.A Line current $i_{a^{\prime}}$

Looking at the Δ / Y transformer block, from KCL, the line current $i_{a^{\prime}}$ is the difference of the two currents going into the primary of the top and bottom transformers, or $i_{a^{\prime}}=i_{a^{\prime} p}-i_{c^{\prime} p}$ as labeled in Fig. 3. So, to find $i_{a^{\prime}}$, we must first find the secondary-side currents $i_{a^{\prime} s}$ and $i_{c^{\prime} s}$ and then transform them into their respective primary-side currents.

To the right of our Δ / Y transformer (not shown here) is a 6 -pulse rectifier. The secondary-side currents will thus have the form of a 6 -pulse rectifier, with each phase shifted by 120°. In particular, $i_{c^{\prime} s}$ will lag behind $i_{a^{\prime} s}$ by 240°. We then reflect the secondary-side currents across the $\sqrt{3}: 1$ transformer, which scales the current magnitudes by a factor of $1 / \sqrt{3}$, giving us the primary-side waveforms shown in Fig. 4. (Here, we started our waveforms at angle $-\pi / 6$ to make subsequent analysis easier.) Taking the difference between $i_{a^{\prime} p}$ and $i_{c^{\prime} p}$ gives us the line current $i_{a^{\prime}}$, shown in Fig. 4.

7.2.B Primary-side line current i_{A}

From KCL, the primary-side line current i_{A} is the sum of the primary-side currents going into each transformer block, or $i_{A}=i_{a}+i_{a^{\prime}}$. We know what $i_{a^{\prime}}$ is from the previous part. For i_{a}, we know that the outputs of the Y / Y and Δ / Y transformer blocks are shifted by $\pi / 6$ from each other. Now, we need to figure out which direction to shift the waveforms.

Looking at the top transformer in the Δ / Y transformer block, we can see that the secondaryside current $i_{a^{\prime} s}$ is driven by the primary-side voltage $v_{a b}$. In the Y / Y transformer block, the secondary-side current $i_{a s}$ is driven by the primaryside voltage v_{a}. As shown in lecture, we know that $v_{a b}$ lags behind v_{a} by $\pi / 6$. Therefore, $i_{a^{\prime} s}$ should also lag behind i_{a} by $\pi / 6$, giving us the current waveform for i_{a} shown in Fig. 4. To get our primary-side line current i_{A}, we add the two primary-side currents for each transformer block, giving us the waveform in Fig. 4.

7.3 KPVS 9.15: 3-Phase Bridge Inverter

The voltage $v_{n r}$ is the average of the three phase voltages and is plotted in Fig. 9.20(d) of the text. The phase-to-neutral quantities can be computed as $v_{a n}=v_{a r}-v_{n r}, v_{b n}=v_{b r}-v_{n r}$, and $v_{c n}=$ $v_{c r}-v_{n r}$. We add these quantities as shown in Table 2 (see last page).

7.4 KPVS 9.18: 3-Phase Inverter PWM Modulation

7.4.A Local-average line-to-line output voltages

 In this problem, our duty ratios are$$
\begin{aligned}
& d_{1}=1-d_{4}=\frac{1}{2}+\frac{m}{2} \sin (\omega t)+\frac{m}{12} \sin (3 \omega t) \\
& d_{3}=1-d_{6}=\frac{1}{2}+\frac{m}{2} \sin \left(\omega t-\frac{2 \pi}{3}\right)+\frac{m}{12} \sin (3 \omega t) \\
& d_{5}=1-d_{2}=\frac{1}{2}+\frac{m}{2} \sin \left(\omega t+\frac{2 \pi}{3}\right)+\frac{m}{12} \sin (3 \omega t)
\end{aligned}
$$

To find the local-average line-to-line voltages, we must first find the local-average line-to-reference voltages. For now, let's look at voltage $v_{a r}$; the other two voltages have analogous analysis. When switch S 1 is on and switch S 4 is off, v_{a} is tied to $V_{d c}$ so that $v_{a r}=V_{d c} / 2$. When switch S 1 is off and switch S 4 is on, v_{a} is tied to ground so that $v_{a r}=-V_{d c} / 2$. The local-average line-to-reference voltage $\bar{v}_{a r}$ is thus

$$
\begin{aligned}
\bar{v}_{a r}= & d_{1} \frac{V_{d c}}{2}+\left(1-d_{1}\right) \frac{-V_{d c}}{2} \\
= & \left(\frac{1}{2}+\frac{m}{2} \sin (\omega t)+\frac{m}{12} \sin (3 \omega t)\right) \frac{V_{d c}}{2} \\
& +\left(1-\frac{1}{2}-\frac{m}{2} \sin (\omega t)-\frac{m}{12} \sin (3 \omega t)\right) \frac{-V_{d c}}{2} \\
= & \frac{m}{2} V_{d c} \sin (\omega t)+\frac{m}{12} V_{d c} \sin (3 \omega t)
\end{aligned}
$$

We can similarly find the other two local-average line-to-reference voltages.

$$
\begin{aligned}
& \bar{v}_{b r}=\frac{m}{2} V_{d c} \sin \left(\omega t-\frac{2 \pi}{3}\right)+\frac{m}{12} V_{d c} \sin (3 \omega t) \\
& \bar{v}_{c r}=\frac{m}{2} V_{d c} \sin \left(\omega t+\frac{2 \pi}{3}\right)+\frac{m}{12} V_{d c} \sin (3 \omega t)
\end{aligned}
$$

The local-average line-to-line voltages can be found by taking the differences between the line-to-reference voltages and then simplifying using the following two trig identities:

$$
\begin{gathered}
\sin u-\sin v=2 \sin \left(\frac{1}{2}(u-v)\right) \cos \left(\frac{1}{2}(u+v)\right) \\
\cos \left(u-\frac{\pi}{2}\right)=\sin u
\end{gathered}
$$

Using these trig identities, we can find $\bar{v}_{a b}$.

$$
\begin{aligned}
\bar{v}_{a b} & =\bar{v}_{a r}-\bar{v}_{b r} \\
& =\frac{m}{2} V_{d c} \sin (\omega t)-\frac{m}{2} V_{d c} \sin \left(\omega t-\frac{2 \pi}{3}\right) \\
& =\frac{m}{2} V_{d c}\left(2 \sin \left(\frac{1}{2}\left(\frac{2 \pi}{3}\right)\right) \cos \left(\frac{1}{2}\left(2 \omega t-\frac{2 \pi}{3}\right)\right)\right) \\
& =\frac{m}{2} V_{d c}\left(\sqrt{3} \cos \left(\omega t-\frac{\pi}{3}\right)\right) \\
& =m \frac{\sqrt{3}}{2} V_{d c} \sin \left(\omega t+\frac{\pi}{6}\right)
\end{aligned}
$$

Similarly, we can find the other two local-average line-to-line voltages.

$$
\begin{aligned}
\bar{v}_{b c} & =m \frac{\sqrt{3}}{2} V_{d c} \sin \left(\omega t-\frac{\pi}{2}\right) \\
\bar{v}_{c a} & =m \frac{\sqrt{3}}{2} V_{d c} \sin \left(\omega t+\frac{5 \pi}{6}\right)
\end{aligned}
$$

7.4.B Duty ratio extremae

To find the locations of extremae of d_{1}, we want to take its first derivative with respect to ωt and set it equal to zero.

$$
\begin{aligned}
\frac{d\left(d_{1}\right)}{d \omega t} & =\frac{d}{d \omega t}\left(\frac{1}{2}+\frac{m}{2} \sin (\omega t)+\frac{m}{12} \sin (3 \omega t)\right) \\
& =\frac{m}{2} \cos (\omega t)+\frac{m}{4} \cos (3 \omega t)
\end{aligned}
$$

Setting the above to zero and multiplying by $4 / m$, we get that the local extremae occur when

$$
2 \cos (\omega t)+\cos (3 \omega t)=0
$$

7.4.C Distortion boundary

We want to show that for $m=\frac{2}{\sqrt{3}}, d_{1}$ has a maximum of 1 at $\omega t=60^{\circ}$ and 120° and a minimum of zero at $\omega t=240^{\circ}$ and 300°.

From part b, we know where the extremae of d_{1} are. Now, we just need to show whether the extremae at these specific points are maxima or minima. To do this, we take the second derivative of d_{1} with respect to ωt. If $\frac{d\left(d_{1}\right)^{2}}{d^{2} \omega t}<0$, we have a maximum. If $\frac{d\left(d_{1}\right)^{2}}{d^{2} \omega t}>0$, we have a minimum.

$$
\frac{d\left(d_{1}\right)^{2}}{d^{2} \omega t}=\frac{-m}{2} \sin (\omega t)-\frac{3 m}{4} \sin (3 \omega t)
$$

To get the value of d_{1} at each point, we plug ωt back into our equation for d_{1}. A summary of the specific points we're interested in is in Table 1.

Figure 3: Transformer connections for the 12-pulse rectifier (reproduced KPVS Fig. 9.28)

Figure 4: Primary-side Δ line currents

Vector $\{\mathrm{a} \mathrm{b} \mathrm{c}\}$	Sw. on	$v_{a r}$	$v_{b r}$	$v_{c r}$	$v_{a b}$	$v_{b c}$	$v_{c a}$	$v_{a n}$	$v_{b n}$	$v_{c n}$	$v_{n r}$
$S_{0}=\{000\}$	$4,6,2$	$-1 / 2$	$-1 / 2$	$-1 / 2$	0	0	0	0	0	0	$-1 / 2$
$S_{1}=\{100\}$	$1,6,2$	$+1 / 2$	$-1 / 2$	$-1 / 2$	+1	0	-1	$+2 / 3$	$-1 / 3$	$-1 / 3$	$-1 / 6$
$S_{2}=\{110\}$	$1,3,2$	$+1 / 2$	$+1 / 2$	$-1 / 2$	0	+1	-1	$+1 / 3$	$+1 / 3$	$-2 / 3$	$+1 / 6$
$S_{3}=\{010\}$	$4,3,2$	$-1 / 2$	$+1 / 2$	$-1 / 2$	-1	+1	0	$-1 / 3$	$+2 / 3$	$-1 / 3$	$-1 / 6$
$S_{4}=\{011\}$	$4,3,5$	$-1 / 2$	$+1 / 2$	$+1 / 2$	-1	0	+1	$-2 / 3$	$+1 / 3$	$+1 / 3$	$+1 / 6$
$S_{5}=\{001\}$	$4,6,5$	$-1 / 2$	$-1 / 2$	$+1 / 2$	0	-1	+1	$-1 / 3$	$-1 / 3$	$+2 / 3$	$-1 / 6$
$S_{6}=\{101\}$	$1,6,5$	$+1 / 2$	$-1 / 2$	$+1 / 2$	+1	-1	0	$+1 / 3$	$-2 / 3$	$+1 / 3$	$+1 / 6$
$S_{7}=\{111\}$	$1,3,5$	$+1 / 2$	$+1 / 2$	$+1 / 2$	0	0	0	0	0	0	$+1 / 2$

Table 2: Update of Table 9.1 in the text with line-neutral quantities added for problem 9.15

MIT OpenCourseWare
https://ocw.mit.edu

6.622 Power Electronics

Spring 2023
For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

[^0]: *Khandoker N. Rafa Islam 2023 (adapted from Yang 2022)

