6.6220 HW10 Solutions*

10.1 KPVS 26.1: Input Filter for Buck Converter

Proceeding as in Example 26.1, the range of duty cycles is

$$
D=\frac{V_{2}}{V_{1}} \in\left[\frac{10}{25}, \frac{10}{20}\right]=[0.4,0.5]
$$

while the range of the average inductor current is

$$
I_{L}=\frac{P_{o}}{V_{2}} \in\left[\frac{50}{10}, \frac{100}{10}\right]=[5,10]
$$

Assuming zero inductor ripple and that the first harmonic of I_{x} is most important for filter design, we approximate the drive waveform as a sinusoid at $\omega_{s}=2 \pi(500 k)=3.15 \times 10^{6} \mathrm{rad} / \mathrm{s}$ having worst case amplitude at $\mathrm{D}=0.5$ and $I_{L}=10, I_{x, 1}=6.36 \mathrm{~A}$. As in the example, we'll take a conservative (though arbitrary) factor of three in our ripple requirement to account forour simplifications. So, we require $I_{y, 1}=5 \times 10^{-3} \mathrm{~A}$. Since our worst-case is identical to that of Example 26.1, the rest of this solution proceeds identically.

10.2 KPVS 26.4: EMI Noise Seperator

(a) Applying KVL: $v_{1}-v_{p}-v_{R}=0$ and $v_{2}+v_{P}-$ $v_{R}=0$, where v_{R} is the voltage across the resistor and v_{p} is the voltage on the winding of the transformer between v_{1} and $v_{C M}$. Since the transformer is $1: 1$, this voltage is the same on all four ports of the transformer. Summing these expressions yields $v_{1}+v_{2}=2 v_{R}$, as expected.
(b) Applying KVL:

$$
v_{D M}-2 v_{p}=0
$$

We have seen that $v_{p}=v_{1}-v_{R}=\left(v_{1}-v_{2}\right) / 2$. Thus $v_{D M}=v_{1}-v_{2}$ as expected.
(c) Calling the current out of port $1 i_{1}$, the current out of port $2 i_{2}$, and the current into the

[^0]DM resistor $i_{D M}$, and noting that the transformer windings must be magnetically in-series (the voltage at every port is identical), we can write:

$$
i_{1}-i_{2}=2 i_{D M}=\frac{v_{1}-v_{2}}{50}
$$

Similarly, we can connect these currents to the $v_{C M}$ voltage as:

$$
i_{1}+i_{2}=\frac{v_{1}+v_{2}}{50}
$$

Summing these equations yields:

$$
2 i_{1}=\frac{v_{1}-v_{2}}{50}+\frac{v_{1}+v_{2}}{50}=\frac{v_{1}}{25}
$$

Thus, $Z_{1}=v_{1} / i_{1}=50 \Omega$, as expected.

10.3 KPVS 26.5: Filter Capacitor Parasitics

(a) We can derive the asymptotes by considering the impedance of the RLC branch, which is

$$
Z_{R L C}=\frac{1}{j \omega C_{f}}+j \omega L_{c}+R_{c}
$$

At low frequencies, the capacitance's impedance dominates, and the branch is effectively an opencircuit. Thus, $\tilde{i}_{x}=\tilde{i}_{y}$, and the gain is 1 as expected. As the frequency increases, the dominantly C_{f} branch interacts with the series L_{f} inductance and once we are past the resonance of L_{f} and C_{f}, this LC filter rolls-off at $-40 \mathrm{~dB} / \mathrm{dec}$. This continues to happen until the impedance of C_{f} drops low enough that R_{c} begins to control the series impedance. We assume this happens at the frequency where their impedance magnitude is equal, $\omega=1 /\left(R_{c} C_{f}\right)$. After this, the branch is considered dominantly resistive, and forms an RL filter between L_{f} and R_{c}, rolling off at -20 dB per decade. This continues as frequency is increased until the branch becomes inductive, which we again assume starts to happen around the frequency where the impedance magnitude of L_{c} is equal to $R_{c}, \omega=$
R_{c} / L_{c}. Beyond this value, the dominantly inductive branch forms a simple current divider with L_{f} which results in constant gain between \tilde{i}_{y} and \tilde{i}_{x} of $L_{c} /\left(L_{c}+L_{f}\right)$ (this can be straightforwardly derived by equating $\left.-i_{y} Z_{L_{f}}=\left(i_{y}-i_{x}\right) Z_{L_{c}}\right)$.
(b) At high frequencies, the current gain approaches the final asymptote

$$
\left|H_{i}\right| \rightarrow \frac{L_{c}}{L_{c}+L_{f}} \approx \frac{L_{c}}{L_{f}}=10^{-3}
$$

The figures in the chapter just show the base$10 \log$ of the value, which would be -3 dB . On a conventional bode plot, we'd show this as 20 times the base- 10 log , which is -60 dB .
(c) In this case, the resistance never dominates the branch and we transition directly from a capacitive impedance to an inductive impedance. So, this asymptote would occur at the resonant frequency $\omega=1 / \sqrt{L_{c} C_{f}}$.

MIT OpenCourseWare
https://ocw.mit.edu

6.622 Power Electronics

Spring 2023
For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

[^0]: *Khandoker N. Rafa Islam 2023

