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1 Introduction: periodic media nomenclature

1. The space domain is defined by a basis,(a1, a2, a3), where any vector can be written as

r′ = r +R = r + α1a1 + α2a2 + α3a3 , (1)

where R is the translation vector, with α1, α2, α3 integers.

2. The spectral domain is defined by a basis, (b1, b2, b3), and similarly, the translational vector

is written as

G = β1b1 + β2b2 + β3b3 , (2)

where β1, β2, β3 are integers.

3. The two basis are linked since the functions (fields, permittivity) are periodic. For example,

if we write the permittivity:

Fourier expansion: ε(r) =
∑

G

ε̃(G) eiG·r where ε̃(G) =
1

Vcell

∫∫∫

dr3ε(r) e−iG·r . (3)

Periodicity: ε(r +R) =
∑

G

ε̃(G) eiG·(r+R)

=
∑

G

ε̃(G) eiG·r eiG·R = ε(r) (4)

so that eiG·R = 1 and

G ·R = 2mπ where m ∈ {. . . ,−1, 0, 1, 2, . . .} . (5)

We can see that condition (5) is immediately verified if we impose:

bj · ai = 2πδij . (6)
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2 Section 1. Introduction: periodic media nomenclature

4. Bloch-Floquet theorem:

Since EM fields are periodic, we can write them as a propagating function times a function

with the same periodicity as the medium:

ξ
k
(r) = eik·r ζ

k
(r) where ζ

k
(r +R) = ζ

k
(r) , (7)

and where ξ can represent either the electric or magnetic fields, E or H.

Since ζ(r) is periodic, we can Fourier expand it:

ζ
k
(r) =

∑

G

ζ̃
G
eiG·r , (8)

so that we shall write:

E
k
(r) =

∑

G

e
G
ei(k+G)·r , (9a)

H
k
(r) =

∑

G

h
G
ei(k+G)·r . (9b)

5. Wave equation in source-free region:

From Maxwell’s equation, we can easily obtain the following wave equations in source-free

regions (with ε = ε(r)):

∇×∇×E(r) =

(

ω

c

)2

µrεr(r)E(r) , (10a)

∇×

[

1

εr(r)
∇×H(r)

]

=

(

ω

c

)2

µrH(r) , (10b)

To make these equations more symmetrical, we shall work with 1/εr(r) instead of εr(r)

directly, so that we define

κr(r) =
1

εr(r)
=
∑

G

κ̃r(G) e
iG·r . (11)

The wave equations are rewritten as:

κr(r)∇×∇×E(r) =

(

ω

c

)2

µr E(r) , (12a)

∇×

[

κr(r)∇×H(r)

]

=

(

ω

c

)2

µrH(r) . (12b)
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2 Treatment of the E field

2.1 Method 1: direct expansion of the permittivity

We want to write Eq. (10a) with the decomposition of Eq. (9a). First, let us compute the first

curl (taking G
′
as the variable for the expansion):

∇×Ek(r) =
∑

G
′

∇×

[

e
G

′ ei(k+G
′

)·r
]

= i
∑

G
′

(k +G
′
)× e

G
′ ei(k+G

′

)·r . (13)

Taking the curl one more time gives

∇×∇× E
k
(r) = −

∑

G
′

(k +G
′
)×

[

(k +G
′
)× e

G
′

]

ei(k+G
′

)·r . (14)

Upon using Eq. (3) but changing the index G into G
′′
, we write

εr(r)E(r) =
∑

G
′

∑

G
′′

ε̃r(G
′′
) e
G

′ ei(k+G
′

+G
′′

)·r . (15)

By changing the variables G = G
′
+G

′′
:

εr(r)E(r) =
∑

G

∑

G
′

ε̃r(G−G
′
) e
G

′ ei(k+G)·r . (16)

The wave equation (see Eq. (10a)) can therefore be rewritten as:

−
∑

G
′

(k +G
′
)×

[

(k +G
′
)× e

G
′

]

ei(k+G
′

)·r =

(

ω

c

)2

µr
∑

G

∑

G
′

ε̃r(G−G
′
) e
G

′ ei(k+G)·r . (17)

We can simplify by exp (ik · r) and multiply by exp (−iG
′′
· r) to get:

−
∑

G
′

(k+G
′
)×

[

(k+G
′
)×e

G
′

]

ei(G
′

−G
′′

)·r =

(

ω

c

)2

µr
∑

G

∑

G
′

ε̃r(G−G
′
) e
G

′ ei(G−G
′′

)·r . (18)

If we integrate this equation over the entire space, we can pull all the terms out of the

integral, except ei(G
′

−G
′′

)·r on the left-hand side and. ei(G−G
′′

)·r on the right-hand side. Yet,

we have

∫∫∫

V

dr3ei(G−G
′′

)·r =
1

(2π)3
δ(G−G

′′
) , (19)

so that Eq. (18) becomes (upon substituting G
′′
by G since these are dummy variables):

−(k +G)×

[

(k +G)× e
G

]

=

(

ω

c

)2

µr
∑

G
′

ε̃r(G−G
′
) e
G

′ , ∀G . (20)
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2.2 Method 2: expansion of the inverse of the permittivity

Instead of working with Eq. (10a), we can also use Eq. (12a), which would need the expansion

of Eq. (11).

Applying the same method (and transforming the index of Eq. (11) from G to G
′′
), we get:

−
∑

G
′′

∑

G
′

κ̃r(G
′′
)(k+G

′
)×

[

(k+G
′
)× e

G
′

]

ei(k+G
′

+G
′′

)·r =

(

ω

c

)2

µr
∑

G
′

e
G

′ei(k+G
′

)·r . (21)

which, upon substituting G = G
′
+ G

′′
, simplifying by exp (ik · r), multiplying by

exp (−iG
′′
· r), integrating over the whole space, using Eq. (19) and finally substituting G

′′

by G, becomes:

−
∑

G
′

κ̃r(G−G
′
)(k +G

′
)×

[

(k +G
′
)× e

G
′

]

=

(

ω

c

)2

µr eG
, ∀G . (22)

3 Treatment of the H field

The H field is treated in an exactly similar way to eventually obtain very similar equations.

However, these equations can still be pushed further by using the fact that ∇ ·H
k
(r) = 0.

Upon using this equality, we see from Eq. (9b) that (using G
′
for the expansion of the field):

(k +G
′
) · h

G
′ = 0 . (23)

We can therefore define three vectors (ê1, ê2, ê3) such that

k +G
′
= |k +G

′
| ê3 , (24a)

ê1 · ê3 = ê2 · ê3 = 0 , (24b)

and (ê1, ê2, ê3) for an orthonormal tryad. In that case, we can decompose

h
G

′ = h1G
′ ê1 + h2G

′ ê2 =
∑

λ=1,2

hλG
′ êλ . (25)

We need now to introduce this expression into Eq. (12b). First, we compute

∇×H
k
(r) = i

∑

G
′

∑

λ

hλG
′

[

(k +G
′
)× êλ

]

ei(k+G
′

)·r , (26)

so that

κr(r)∇×H
k
(r) = i

∑

G
′′

∑

G
′

∑

λ

hλG
′ κ̃r(G

′′
)

[

(k +G
′
)× êλ

]

ei(k+G
′

+G
′′

)·r

= i
∑

G

∑

G
′

∑

λ

hλG
′ κ̃r(G−G

′
)

[

(k +G
′
)× êλ

]

ei(k+G)·r . (27)

Taking the next curl, we write:
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∇×

[

κr(r)∇×Hk
(r)

]

= −
∑

G

∑

G
′

∑

λ

hλG
′ κ̃r(G−G

′
)

[

(k+G)×[(k+G
′
)×êλ]

]

ei(k+G)·r , (28)

so that the wave equation (see Eq. (12b)) becomes:

−
∑

G

∑

G
′

∑

λ

hλG
′ κ̃r(G−G

′
)

[

(k+G)×[(k+G
′
)×êλ]

]

ei(k+G)·r =

(

ω

c

)2

µr
∑

G
′

∑

λ

hλG
′ ei(k+G

′

)·rêλ .

(29)

Always by the same token (multiplying by the proper functions and integrating over whole

space), we write:

−
∑

G
′

∑

λ

hλG
′ κ̃r(G−G

′
)

[

(k+G)× [(k+G
′
)× êλ]

]

=

(

ω

c

)2

µr
∑

λ′′

hλ′′

G
êλ′′ ∀G . (30)

We can further simplify this expression by dot-multiplying the equation by êλ′ and noting

that (using C · (A×B) = B · (C ×A))

[

(k +G)× [(k +G
′
)× êλ]

]

· êλ′ = −

[

(k +G
′
)× êλ

]

·

[

(k +G)× êλ′

]

(31)

Therefore, dot-multiplying Eq. (30) by êλ′ , we get the final result:

∑

G
′

∑

λ

{[

(k +G
′
)× êλ

]

·

[

(k +G)× êλ′

]}

κ̃r(G−G
′
) hλG

′ =

(

ω

c

)2

µrhλ′

G
. (32)

Upon exchanging G and G
′
(transformations: G→ G

′′
, G

′
→ G, G

′′
→ G

′
), we obtain

∑

G

∑

λ

{[

(k +G)× êλ

]

·

[

(k +G
′
)× êλ′

]}

κ̃r(G
′
−G) hλG

=

(

ω

c

)2

µrhλ′

G
′ . (33)

which is the relation given in [Joannopoulos et al., 1995, p. 129]. Upon using the same

notation, we rewrite Eq. (33) as:

∑

λG

Θk
(λG),(λG)′

h
(λG)

=

(

ω

c

)2

µrh
(λG)′

, (34a)

where

Θk
(λG),(λG)′

= κ̃r(G
′
−G)

[

(k +G)× êλ

]

·

[

(k +G
′
)× êλ′

]

. (34b)
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3.1 Matrix form

We can cast Eq. (33) in matrix form. First, we rewrite the kernel of the operator of Eq. (34b)

as:

[

(k +G)× êλ

]

·

[

(k +G
′
)× êλ′

]

=

∣

∣

∣

∣

(k +G)

∣

∣

∣

∣

∣

∣

∣

∣

(k +G
′
)

∣

∣

∣

∣

[ê3 × êλ] · [ê3 × êλ′ ] . (35)

Remembering that ê3 × ê1 = ê2 and ê3 × ê2 = −ê1, we can write:

[ê3 × êλ] · [ê3 × êλ′ ] =

(

ê2 · ê2 −ê2 · ê1

−ê1 · ê2 ê1 · ê1

)

, (36)

so that we write the operator as:

Θk
(λG),(λG)′

= κ̃r(G
′
−G)

[

(k +G)× êλ

]

·

[

(k +G
′
)× êλ′

]

= κ̃r(G
′
−G)

∣

∣

∣

∣

(k +G)

∣

∣

∣

∣

·

∣

∣

∣

∣

(k +G
′
)

∣

∣

∣

∣

(

ê2 · ê2 −ê2 · ê1

−ê1 · ê2 ê1 · ê1

)

, (37)

used in Eq. (34a).


