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6.641 — Electromagnetic Fields, Forces, and Motion Spring 2009 

Problem Set 1 - Solutions 

Prof. Markus Zahn MIT OpenCourseWare 

Problem 1.1 

A 
−→
F 

→
v 
−
B ) Lorentz Force Law = q(

−
E + − ×

→→

In the steady state 
−
F = 0, so 
→


q
−→
E v 

−
B 

→
v 
→


= −q−→×
→
⇒ 
−
E = −− ×

−
B→

vy ̂iy pos. charge carriers 
v =→−

−vy ̂iy neg. charge carriers


−
B iz

→

= B0
ˆ

so 

−
E 

−vyB0îx pos. charge carriers →
= 

vyB0îx neg. charge carriers 

B � d � 0 

vH = Φ(x = d) − Φ(x = 0) = − Exdx = Exdx

0 d


vyB0d pos. charges 
vH = 

−vyB0d neg. charges 

As seen in part (b), positive and negative charge carriers give opposite polarity voltages, so answer is “yes.” 

Problem 1.2 

By problem 

ρbr ; r < b 
ρ = b 

ρa; b < r < a


Also, no σs at r = b, but non zero σs such that E� = 0 for r > a.
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Figure 1: Figure for 1.1C. Opposite polarity voltages between holes and electrons (Image by MIT Open-
CourseWare.) 

A 

By Gauss’ Law: 

�0E� d�a = ρdV ; Sr = sphere with radius r · 
SR VR 

As shown in class, symmetry ensures E� has only radial compoent: E� = Er ̂ir


LHS of Gauss’ Law:


� � 2π � π � � � � 
�0E� d�a = �0 Er ̂ir r 2 sin θdθdφîr· · 

SR 0 0 � �� � 
d�a in spherical coord. 

= 4πr2 Er�0 

surface

area of

sphere of

radius r


RHS of Gauss’ Law: 

For r < b: 

� � r � 2π � π 

ρdV = 
ρr 

r 2 sin θdθdφdr 
b � �� �VR 0 0 0 

diff. vol. element 
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4 πr4 πr4ρb 
= ρb = 

4 b b 

vol of 
sphere 

For r > b & r < a (b < r < a): 

� � b � 2π � π � r � 2π � π 

ρdV = 
ρbr

r 2 sin θdθdφdr + ρar 2 sin θdθdφdr 
VR 0 0 0 b 0 0b 

�
3 − b3)4πρbb

3 4πρa(r
= + 

4 3 

= πρbb
3 +

4 
πρa(r 3 − b3) b < r < a 

3 

B 

Equating LHS and RHS 

⎧ ⎪ πr4 ⎨ ρb; r < b

4πr2Er�0 = b
⎩⎪ πρbb

3 +
4πρa(a

3 − b3)
; b < r < a 

3 ⎧ ⎪ r2ρb 
; r < b ⎨ 

=Er ⎪ 4
b
�
3
0
ρ
b 
b ρa(r

3 − b3)⎩ + ; b < r < a 
4�0r2 3�0r2 

Again: n̂ (�0E
a − �0E

b) = σs· 

E� (r = a +) = 0 

Er(r = a−) = 
ρbb

3 

+ 
ρa(a

3 − b3) 
by part (a) 

4�0a2 3�0a2 
← 

σs = îr · −�0E� (r = a−) , so: 

ρbb
3 ρa(a

3 − b3)
σs = − 

4�0a2 
+

3�0a2 

D 

r < b Qb = πb3ρb Qσ(r = a) = σs4πa
2 = −4πa2 4

ρ
�
b

0

b
a

3

2 + ρa(
3
a
�0

3

a
−
2 
b3) 

b < r < a Qa = 4 π(a3 − b3)ρa Qσ = Qb + Qa + Qσ = 0 3 
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Figure 2: A diagram of a wire carrying a non-uniform current density and the return current at r = a (Image 
by MIT OpenCourseWare). 

Problem 1.3 

A 

We are told current in +z direction inside cylinder r < b 

Current going through cylinder: 

� � b � 2π � 
J0r 

� � � J02πb
2 

= Itotal = J� d�a = î  
z rdφdrî  

z = · 
b 

· 
3S 0 0 � �� � � �� � 

J�
d�a 

K� = 
Total current in sheet | | 

length of sheet (ie, circumference of circle of radius a) 

Thus, K� ’s units are Amps , whereas J�’s units are Amps 
2m m

2 J0πb
2 J0b

2 

|K� | = 3 

2πa 
=

3a 

K� = − J3
0 
a
b2 

î  
z 
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B


Figure 3: A diagram of the wire with a circle C centered on the z-axis with minimum surface S (Image by 
MIT OpenCourseWare). 

Ampere’s Law 

� � � 

C 

�H · d�s = 
S 

�J · d�a + 
d 
dt � r 

�0 
�E �� 
· d�a � 

�no E field, term is 0 

Choose C as a circle and S as the minimum surface that circle bounds. 

Now solve LHS of Ampere’s Law 

� � 2π 

H� d�s = (Hφîφ) (rdφ)îφ = 2πrHφ· � �� � 
· � �� �C 0 

� d�sH 
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We assumed Hz = Hr = 0. This follows from the symmetry of the problem. Hr = 0 because 
S µ0H� d�a = ·

0. In particular choose S as shown in Figure 4a. 

Figure 4: A diagram of the current carrying wire of radius b with the choice for S as well as a diagram of 
the wire with the choice of contour C (Image by MIT OpenCourseWare). 

Hz is more difficult to see. It is discussed in Haus & Melcher. The basic idea is to use the contour, C 
(depicted in Figure 4b), to show that if Hz = 0 it would have to be nonzero even at � ∞, which is not possible 
without sources at ∞. 

Now for RHS of Ampere’s Law: 

r < b 

� � 2π � r � � � � 
J� · d�a = 

J0
b

r� 
î  
z · r�dr�dφî  

z 
S 0 0 � �� � � �� � 

J�
d�a 

2J0r
3π 

= 
3b


a > r > b


� � 2π � b � 
J0r

� � � � � 2π � r � � � �

J� d�a = î  

z r�dr�dφî  
z + 0 î  

z r�dr�dφî  
z


S 
· 

0 0 b 
· 

0 b 
· · 

0 

=
2 
J0b

2π 
3


Equating LHS & RHS:


⎧
⎨ 3
2 
b J0r

3π ; r < b

2πrHφ = 2 J0b

2π ; a > r > b ⎩ 3 
0 ; r > a 
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⎧ 2 ⎨ J
3
0 r
b îφ ; r < b 

H� = ⎩ 
J
3
0 
r
b2 

îφ ; a > r > b 
0 ; r > a 

Problem 1.4 

A 

We can simply add the fields of the two point charges. Start with the field of a point charge q at the origin 
and let SR be the sphere of radius R centered at the origin. By Gauss: 

ε0
−→
E d−a = ρdV· →

SR V 

In this case ρ = δ(−r )q, so RHS is →

ρdV = δ(−r )qdxdydz = q→

LHS is 

ε0
−
Er · → = (ε0 )(surface area of Sr
→

d−a Er ) 
SR 

symmetry 

= 4πr2ε0Er 

Equate LHS and RHS 

4πr2ε0Er = q 

−
E

q 
îr

→
= 

4πr2ε0 

Convert to cartesian: Any point is given by 

−r = x(r, θ, φ)̂ix + y(r, θ, φ)̂ + z(r, θ, φ)̂iz
→ iy 

By spherical coordinates 

x = r sin θ cos φ 

y = r sin θ sin φ


z = r cos θ

−r = r sin θ cos φîx + r sin θ sin φˆ + r cos θîz

→ iy


îr � line formed by varying r and fixing φ and θ


r̄ = rīr 

Thus, 

īr = sin θ cos φî  
x + sin θ sin φîy + cos θîz 

= � 
x

î  
x + � 

y
î  
y + � 

z
î  
z 

x2 + y2 + z2 x2 + y2 + z2 x2 + y2 + z2 
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so, 

−
E 

q
ir

→
= ˆ

4πε0(x2 + y2 + z2) 

= 
−
E 1 + 

−
E 2

−→
E total 

→ →

−→
E 1 is just 

−
E with y → y − 2 . 

−
E 2 is just 

−
E with y → y + 2 .

→ d → → d Problem has y = 0 

(i) ⎡ ⎤ � � 
d →

= 
−
E 1 � � � 

x2 + + z2 x2 + + z2 x2 + + z2 4πε0(x2 + 4
4 4 4 

−
E total 

→
= ⎣ x 

d2 
îx + 

z 

d2 
îz − 2 

d2 
îy ⎦ · q 

d2 
+ z2) 

d2 3 
2 

=
4πε0(x2 + 

q 

4 + z2) 
xîx − 

d 
2
îy + zîz 

(ii) 

= 
−
E 1 + 

−
E 2

−→
E total 

→ →

xîx + zîz

= q � �2 3


2πε0(x2 + d 
2 + z2)
2 

(iii) 
−

= 
− →→ →

E total E 1 + 
−
E 2 

−dqîy
= � � 3 

4πε0 x2 + d4 
2 
+ z2 2 

B 
−→
F 

−
E 

→
= q1
→ −

E doesn’t include field of q 

(i) 
−
F = 0, by Newton’s third law a body cannot exert a net force on itself. 
→

(ii) 

−
F 

−
E 

→ d
, z = 0) 

→
= q1
→

= q
−
E 2(x = 0, y = 

2 

q2īy q2īy
= = 

4πε0(d2) 4πε0d2 

(iii) 

−
F

q2īy→
= − 

4πε0d2 
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