MIT OpenCourseWare
http://ocw.mit.edu

6.641 Electromagnetic Fields, Forces, and Motion

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Problem Set 1 - Solutions

Problem 1.1

A

$$
\vec{F}=q(\vec{E}+\vec{v} \times \vec{B}) \text { Lorentz Force Law }
$$

In the steady state $\vec{F}=0$, so

$$
\begin{aligned}
& q \vec{E}=-q \vec{v} \times \vec{B} \Rightarrow \vec{E}=-\vec{v} \times \vec{B} \\
& \vec{v}= \begin{cases}v_{y} \hat{i}_{y} & \text { pos. charge carriers } \\
-v_{y} \hat{i}_{y} & \text { neg. charge carriers }\end{cases} \\
& \vec{B}=B_{0} \hat{i}_{z}
\end{aligned}
$$

so

$$
\vec{E}= \begin{cases}-v_{y} B_{0} \hat{i}_{x} & \text { pos. charge carriers } \\ v_{y} B_{0} \hat{i}_{x} & \text { neg. charge carriers }\end{cases}
$$

B

$$
\begin{aligned}
& v_{H}=\Phi(x=d)-\Phi(x=0)=-\int_{0}^{d} E_{x} d x=\int_{d}^{0} E_{x} d x \\
& v_{H}= \begin{cases}v_{y} B_{0} d & \text { pos. charges } \\
-v_{y} B_{0} d & \text { neg. charges }\end{cases}
\end{aligned}
$$

C
As seen in part (b), positive and negative charge carriers give opposite polarity voltages, so answer is "yes."

Problem 1.2

By problem

$$
\rho= \begin{cases}\frac{\rho_{b} r}{b} ; & r<b \\ \rho_{a} ; & b<r<a\end{cases}
$$

Also, no σ_{s} at $r=b$, but non zero σ_{s} such that $\vec{E}=0$ for $r>a$.

Figure 1: Figure for 1.1C. Opposite polarity voltages between holes and electrons (Image by MIT OpenCourseWare.)

A
By Gauss' Law:

$$
\oint_{S_{R}} \epsilon_{0} \vec{E} \cdot d \vec{a}=\int_{V_{R}} \rho d V ; \quad S_{r}=\text { sphere with radius r }
$$

As shown in class, symmetry ensures \vec{E} has only radial compoent: $\vec{E}=E_{r} \hat{i}_{r}$

LHS of Gauss' Law:

$$
\oint_{S_{R}} \epsilon_{0} \vec{E} \cdot d \vec{a}=\int_{0}^{2 \pi} \int_{0}^{\pi} \epsilon_{0}\left(E_{r} \hat{i}_{r}\right) \cdot \underbrace{\left(r^{2} \sin \theta d \theta d \phi \hat{i}_{r}\right)}_{d \vec{a} \text { in spherical coord. }}
$$

$$
\begin{aligned}
= & \underbrace{4 \pi r^{2}}_{\text {surface }} \quad E_{r} \epsilon_{0} \\
& \\
& \text { area of } \\
& \text { sphere of } \\
& \text { radius r }
\end{aligned}
$$

RHS of Gauss' Law:
For $r<b$:

$$
\int_{V_{R}} \rho d V=\int_{0}^{r} \int_{0}^{2 \pi} \int_{0}^{\pi} \frac{\rho r}{b} \underbrace{r^{2} \sin \theta d \theta d \phi d r}_{\text {diff. vol. element }}
$$

$$
=\underbrace{\frac{4}{4} \frac{\pi r^{4}}{b}}_{\substack{\text { vol of } \\ \text { sphere }}} \quad \rho_{b}=\frac{\pi r^{4} \rho_{b}}{b}
$$

For $r>b \& r<a(b<r<a)$:

$$
\begin{aligned}
& \int_{V_{R}} \rho d V=\int_{0}^{b} \int_{0}^{2 \pi} \int_{0}^{\pi} \frac{\rho_{b} r}{b} r^{2} \sin \theta d \theta d \phi d r+\int_{b}^{r} \int_{0}^{2 \pi} \int_{0}^{\pi} \rho_{a} r^{2} \sin \theta d \theta d \phi d r \\
& =\frac{4 \pi \rho_{b} b^{3}}{4}+\frac{4 \pi \rho_{a}\left(r^{3}-b^{3}\right)}{3} \\
& =\pi \rho_{b} b^{3}+\frac{4}{3} \pi \rho_{a}\left(r^{3}-b^{3}\right) \quad b<r<a
\end{aligned}
$$

B

Equating LHS and RHS

$$
\begin{gathered}
4 \pi r^{2} E_{r} \epsilon_{0}= \begin{cases}\frac{\pi r^{4}}{b} \rho_{b} ; & r<b \\
\pi \rho_{b} b^{3}+\frac{4 \pi \rho_{a}\left(a^{3}-b^{3}\right)}{3} ; & b<r<a\end{cases} \\
E_{r}= \begin{cases}\frac{r^{2} \rho_{b}}{4 \epsilon_{0} b} ; & r<b \\
\frac{b^{3} \rho_{b}}{4 \epsilon_{0} r^{2}}+\frac{\rho_{a}\left(r^{3}-b^{3}\right)}{3 \epsilon_{0} r^{2}} ; & b<r<a\end{cases}
\end{gathered}
$$

C
Again: $\hat{n} \cdot\left(\epsilon_{0} E^{a}-\epsilon_{0} E^{b}\right)=\sigma_{s}$
$\vec{E}\left(r=a^{+}\right)=0$
$E_{r}\left(r=a_{-}\right)=\frac{\rho_{b} b^{3}}{4 \epsilon_{0} a^{2}}+\frac{\rho_{a}\left(a^{3}-b^{3}\right)}{3 \epsilon_{0} a^{2}} \leftarrow$ by part (a)
$\sigma_{s}=\hat{i}_{r} \cdot\left(-\epsilon_{0} \vec{E}\left(r=a^{-}\right)\right), \quad$ so:
$\sigma_{s}=-\left[\frac{\rho_{b} b^{3}}{4 \epsilon_{0} a^{2}}+\frac{\rho_{a}\left(a^{3}-b^{3}\right)}{3 \epsilon_{0} a^{2}}\right]$
D

$$
\begin{array}{lll}
r<b & Q_{b}=\pi b^{3} \rho_{b} & Q_{\sigma}(r=a)=\sigma_{s} 4 \pi a^{2}=-4 \pi a^{2}\left[\frac{\rho_{b} b^{3}}{4 \epsilon_{0} a^{2}}+\frac{\rho_{a}\left(a^{3}-b^{3}\right)}{3 \epsilon_{0} a^{2}}\right] \\
b<r<a & Q_{a}=\frac{4}{3} \pi\left(a^{3}-b^{3}\right) \rho_{a} & Q_{\sigma}=Q_{b}+Q_{a}+Q_{\sigma}=0
\end{array}
$$

Figure 2: A diagram of a wire carrying a non-uniform current density and the return current at $r=a$ (Image by MIT OpenCourseWare).

Problem 1.3

A
We are told current in $+z$ direction inside cylinder $r<b$
Current going through cylinder:

$$
=I_{t o t a l}=\int_{S} \vec{J} \cdot d \vec{a}=\int_{0}^{b} \int_{0}^{2 \pi} \underbrace{\left(\frac{J_{0} r}{b} \hat{i_{z}}\right)}_{\vec{J}} \cdot \underbrace{\left(r d \phi d r \hat{i_{z}}\right)}_{d \vec{a}}=\frac{J_{0} 2 \pi b^{2}}{3}
$$

$$
|\vec{K}|=\frac{\text { Total current in sheet }}{\text { length of sheet (ie, circumference of circle of radius a) }}
$$

Thus, \vec{K} 's units are $\frac{\mathrm{Amps}}{\mathrm{m}}$, whereas \vec{J} 's units are $\frac{\mathrm{Amps}}{\mathrm{m}^{2}}$

$$
|\vec{K}|=\frac{\frac{2}{3} J_{0} \pi b^{2}}{2 \pi a}=\frac{J_{0} b^{2}}{3 a}
$$

$$
\vec{K}=-\frac{J_{0} b^{2}}{3 a} \hat{i_{z}}
$$

B

Figure 3: A diagram of the wire with a circle C centered on the z-axis with minimum surface S (Image by MIT OpenCourseWare).
$\underline{\text { Ampere's Law }}$

$$
\oint_{C} \vec{H} \cdot d \vec{s}=\int_{S} \vec{J} \cdot d \vec{a}+\underbrace{\frac{d}{d t} \int_{r} \epsilon_{0} \vec{E} \cdot d \vec{a}}_{\text {no } \vec{E} \text { field, term is } 0}
$$

Choose C as a circle and S as the minimum surface that circle bounds.
Now solve LHS of Ampere's Law

$$
\oint_{C} \vec{H} \cdot d \vec{s}=\int_{0}^{2 \pi} \underbrace{\left(H_{\phi} \hat{i_{\phi}}\right)}_{\vec{H}} \cdot \underbrace{(r d \phi) \hat{i_{\phi}}}_{d \vec{s}}=2 \pi r H_{\phi}
$$

We assumed $H_{z}=H_{r}=0$. This follows from the symmetry of the problem. $H_{r}=0$ because $\oint_{S} \mu_{0} \vec{H} \cdot d \vec{a}=$ 0. In particular choose S as shown in Figure 4a.

Figure 4: A diagram of the current carrying wire of radius b with the choice for S as well as a diagram of the wire with the choice of contour C (Image by MIT OpenCourseWare).
H_{z} is more difficult to see. It is discussed in Haus \& Melcher. The basic idea is to use the contour, C (depicted in Figure 4 b), to show that if $H_{z} \neq 0$ it would have to be nonzero even at ∞, which is not possible without sources at ∞.

Now for RHS of Ampere's Law:

$\underline{r<b}$

$$
\begin{aligned}
& \quad \int_{S} \vec{J} \cdot d \vec{a}=\int_{0}^{2 \pi} \int_{0}^{r} \underbrace{\left(\frac{J_{0} r^{\prime}}{b} \hat{i_{z}}\right)}_{\vec{J}} \cdot \underbrace{\left(r^{\prime} d r^{\prime} d \phi \hat{i_{z}}\right)}_{d \vec{a}} \\
& \quad=\frac{2 J_{0} r^{3} \pi}{3 b} \\
& \underline{a>r>b}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{S} \vec{J} \cdot d \vec{a}=\int_{0}^{2 \pi} \int_{0}^{b}\left(\frac{J_{0} r^{\prime}}{b} \hat{i_{z}}\right) \cdot\left(r^{\prime} d r^{\prime} d \phi \hat{i_{z}}\right)+\underbrace{\int_{0}^{2 \pi} \int_{b}^{r}\left(0 \cdot \hat{i_{z}}\right) \cdot\left(r^{\prime} d r^{\prime} d \phi \hat{i_{z}}\right)}_{0} \\
& =\frac{2}{3} J_{0} b^{2} \pi
\end{aligned}
$$

Equating LHS \& RHS:

$$
2 \pi r H_{\phi}= \begin{cases}\frac{2}{3 b} J_{0} r^{3} \pi ; & r<b \\ \frac{2}{3} J_{0} b^{2} \pi ; & a>r>b \\ 0 ; & r>a\end{cases}
$$

$$
\vec{H}= \begin{cases}\frac{J_{0} r^{2}}{3 b_{2}} \hat{i_{\phi}} ; & r<b \\ \frac{J_{0} b^{2}}{3 r} \hat{i_{\phi}} ; & a>r>b \\ 0 ; & r>a\end{cases}
$$

Problem 1.4

A

We can simply add the fields of the two point charges. Start with the field of a point charge q at the origin and let S_{R} be the sphere of radius R centered at the origin. By Gauss:

$$
\oint_{S_{R}} \varepsilon_{0} \vec{E} \cdot d \vec{a}=\int_{V} \rho d V
$$

In this case $\rho=\delta(\vec{r}) q$, so RHS is

$$
\int \rho d V=\iiint \delta(\vec{r}) q d x d y d z=q
$$

LHS is

$$
\begin{aligned}
& \oint_{S_{R}} \varepsilon_{0} \overrightarrow{E_{r}} \cdot d \vec{a}=(\varepsilon_{0} \underbrace{E_{r}}_{\text {symmetry }})\left(\text { surface area of } S_{r}\right) \\
& =4 \pi r^{2} \varepsilon_{0} E_{r}
\end{aligned}
$$

Equate LHS and RHS

$$
\begin{aligned}
& 4 \pi r^{2} \varepsilon_{0} E_{r}=q \\
& \vec{E}=\frac{q}{4 \pi r^{2} \varepsilon_{0}} \hat{i}_{r}
\end{aligned}
$$

Convert to cartesian: Any point is given by

$$
\vec{r}=x(r, \theta, \phi) \hat{i}_{x}+y(r, \theta, \phi) \hat{i}_{y}+z(r, \theta, \phi) \hat{i}_{z}
$$

By spherical coordinates

$$
\begin{aligned}
& x=r \sin \theta \cos \phi \\
& y=r \sin \theta \sin \phi \\
& z=r \cos \theta \\
& \vec{r}=r \sin \theta \cos \phi \hat{i}_{x}+r \sin \theta \sin \phi \hat{i}_{y}+r \cos \theta \hat{i}_{z} \\
& \hat{i}_{r} \| \text { line formed by varying } r \text { and fixing } \phi \text { and } \theta \\
& \bar{r}=r \overline{i_{r}}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \overline{i_{r}}=\sin \theta \cos \phi \hat{i_{x}}+\sin \theta \sin \phi \hat{i}_{y}+\cos \theta \hat{i}_{z} \\
& =\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}} \hat{i_{x}}+\frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}} \hat{i_{y}}+\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} \hat{i_{z}}
\end{aligned}
$$

so,

$$
\begin{aligned}
& \vec{E}=\frac{q}{4 \pi \varepsilon_{0}\left(x^{2}+y^{2}+z^{2}\right)} \hat{i}_{r} \\
& \vec{E}_{\text {total }}=\vec{E}_{1}+\vec{E}_{2}
\end{aligned}
$$

\vec{E}_{1} is just \vec{E} with $y \rightarrow y-\frac{d}{2} . \vec{E}_{2}$ is just \vec{E} with $y \rightarrow y+\frac{d}{2}$. Problem has $y=0$
(i)

$$
\begin{aligned}
& \vec{E}_{\text {total }}=\vec{E}_{1}=\left[\frac{x}{\sqrt{x^{2}+\frac{d^{2}}{4}+z^{2}}} \hat{i}_{x}+\frac{z}{\sqrt{x^{2}+\frac{d^{2}}{4}+z^{2}}} \hat{i}_{z}-\frac{\frac{d}{2}}{\sqrt{x^{2}+\frac{d^{2}}{4}+z^{2}}} \hat{i}_{y}\right] \cdot\left[\frac{q}{4 \pi \varepsilon_{0}\left(x^{2}+\frac{d^{2}}{4}+z^{2}\right)}\right] \\
& =\frac{q}{4 \pi \varepsilon_{0}\left(x^{2}+\frac{d^{2}}{4}+z^{2}\right)^{\frac{3}{2}}}\left[x \hat{i}_{x}-\frac{d}{2} \hat{i}_{y}+z \hat{i}_{z}\right]
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \vec{E}_{\text {total }}=\vec{E}_{1}+\vec{E}_{2} \\
& =q \frac{x \hat{i}_{x}+z \hat{i}_{z}}{2 \pi \varepsilon_{0}\left(x^{2}+\left(\frac{d}{2}\right)^{2}+z^{2}\right)^{\frac{3}{2}}}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \vec{E}_{\text {total }}=\vec{E}_{1}+\vec{E}_{2} \\
& =\frac{-d q \hat{i}_{y}}{4 \pi \varepsilon_{0}\left(x^{2}+\frac{d^{2}}{4}+z^{2}\right)^{\frac{3}{2}}}
\end{aligned}
$$

B

$$
\vec{F}=q_{1} \vec{E} \quad \vec{E} \text { doesn't include field of } q
$$

(i)
$\vec{F}=0$, by Newton's third law a body cannot exert a net force on itself.
(ii)

$$
\begin{aligned}
& \vec{F}=q_{1} \vec{E}=q \vec{E}_{2}\left(x=0, y=\frac{d}{2}, z=0\right) \\
& =\frac{q^{2} \overline{i_{y}}}{4 \pi \varepsilon_{0}\left(d^{2}\right)}=\frac{q^{2} \overline{i_{y}}}{4 \pi \varepsilon_{0} d^{2}}
\end{aligned}
$$

(iii)
$\vec{F}=-\frac{q^{2} \overline{i_{y}}}{4 \pi \varepsilon_{0} d^{2}}$

