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CHAPTER 2: DETECTION 

 All electromagnetic receiving systems involve detection, which is the conversion of a 
received electrical signal into another electrical signal for interpretation.  The second signal 
typically characterizes the input signal power or the degree of correlation between the received 
signal and a reference wave form.  Detection systems typically consist of one or more physical 
devices that amplify or convert the signals, unavoidably introducing noise, and other elements 
that manipulate the signals to achieve the desired output. 

 This chapter begins in Section 2.1 with a discussion of the major noise processes that limit 
detector performance. Section 2.2 then analyzes various systems for measuring power or 
correlations between signals.  Section 2.3 characterizes how power and noise propagate within 
receiver subsystems to define total system performance.  Section 2.4 then extends the discussion 
to detection of optical and infrared signals, for which photon statistics produce different 
performance characteristics.  Physical characteristics of common detectors are also analyzed in 
an introductory way. 

2.1 NOISE PROCESSES 

2.1.1.  Thermal noise in single-mode transmission lines

In most electromagnetic systems noise limits the performance.  This noise has two primary 
physical origins.  First the random thermal motion of charge carriers in these electromagnetic 
systems induces random electric fields and voltages.  Secondly, the natural fluctuations in arrival 
times of statistically independent quantized charges, photons, or phonons produce “shot noise”.

 The noise associated with radiation from thermally excited charge carriers in solids, liquids, 
gases, or plasmas is called thermal noise, or in the case of random voltage fluctuations in a 
resistor, Johnson noise.  The algebraic expressions for the noise depend on the dimensionality of 
the structure in which it exists.  First we shall derive the thermal noise radiated by a simple 
transmission line, and then thermal radiation in free space and in multimode waveguides.  Such 
radiation propagating through thermally inhomogeneous media is characterized by the equation 
of radiative transfer.  These expressions all take simple forms in their low-frequency and high-
frequency limits, and a somewhat more complex form for intermediate infrared wavelengths.   

 Perhaps the simplest case to understand is that of thermal noise in a one-dimensional 
transmission line that propagates only one mode, typically the TEM or (Transverse 
Electromagnetic Mode).  It is useful to understand the derivation of the TEM noise equation
because the same concepts emerge later in other contexts.  Our objective is to compute the power 
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spectral density of the TEM wave emerging from the left-hand end of the transmission line 
illustrated in Figure 2.1-1. 

Figure 2.1-1 Coupling between electromagnetic power and 
heat in a TEM transmission line. 

 Electromagnetic energy propagated to the right in this matched transmission line will be 
absorbed by the matched load Zo and converted to heat.  Conversely, thermal motion of charged 
carriers in the resistor will produce a fluctuating voltage across its terminals which is then 
perfectly matched to a TEM wave propagating power to the left. 

Figure 2.1-2 Closed slightly lossy TEM transmission line resonator. 

 Our approach to computing the power spectral density propagated toward an observer will 
be to consider a closed container in thermal equilibrium at temperature T(K) which is very 
slightly coupled electromagnetically to electromagnetic waves inside; that is, it is very slightly 
lossy.  Figure 2.1-2 illustrates this lossy container of length D.  This container exhibits an infinite 
number of resonant modes and frequencies.  To find the average thermal power spectral density 
P propagating to the right and left, we shall first find the average energy density W(f) [Jm-1Hz-1], 
and then relate this energy density to the average power P+[W/Hz] propagating to the right. 

 The time average energy density W(f) [Jm-1Hz-1] is readily found: 
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where the energy per photon is hf [Joules] where Planck’s constant 34h 6.624 10 (Js)  and f is 
the photon frequency (Hz). 

 To find the mode density or number of modes per Hertz we note that the short circuits at 
each end of the transmission line force the voltage there to be zero.  Therefore at each resonance 
frequency fm, there must be an integral number of half wavelengths along the transmission line, 
as suggested in Figure 2.1-3.

Figure 2.1-3 TEM resonator modes. 

 The number of half wavelengths in length D is  

   m

m p

2D 2Df
m

v
  (2.1.2) 

where vp is phase velocity.  The number of modes per Hertz is readily found by differentiating 
Equation (2.1.2) with respect to frequency: 

   
p

dm 2D
modes Hz

df v
  (2.1.3) 

 The average number of photons jn  in the jth mode can be computed if we know the 

probability pj(n) of having n photons in mode j.   

 Because photons obey Bose-Einstein statistics, any number of photons can occupy each 
mode.  Since the total energy in the system is fixed, and since combinatorics favor the more 
likely distributions, the probability distribution of photons among states is proportional to 

e
nWj kT

, which is called the Boltzmann distribution, where the Boltzmann constant
23k 1.3805 10 J / K , Wj = hfj, and the total energy in state j is nWj.  We can thus express 

the probability distribution of photons among states in terms of a proportionality constant Q that 
must be determined: 
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where

   j
n 0

p n 1   (2.1.5) 
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The sum of (2.1.9) can be evaluated by recalling: 
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 (2.1.10) 

Thus

   j j j
2W kT W kT W kT

jn 1 e e 1 e  (2.1.11) 

The average number of photons jn  in state j, or photon state density, can be more simply written 

as

   jhf kT
jn 1 e 1    (2.1.12) 

where hfj is the energy Wj associated with the state j. 
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 We now have all the elements of Equation (2.1.1) for the average energy density W(f) [J/m 
Hz] in the closed TEM resonator, which is: 

   
jW kT hf kTp p

2D 1 1 2hfW f hf
v D v e 1e 1

 [Jm-1Hz-1] (2.1.13) 

Now we can relate this energy density to the power flow inside the closed resonator.  The total 
energy density W(f) can be associated with uncoupled energy flows to the right and left 
characterized by W+ + W- = W(f) = 2W+[J/m].  The power flowing to the right P+[W/Hz] is 
simply the group velocity vg times W+.  If the transmission line is nondispersive then the group 
velocity vg equals the phase velocity vp in Equation (2.1.13), which leads to: 
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z   (2.1.14) 

This simple expression for thermal noise per mode is characterized by Figure 2.1-4 

Figure 2.1-4 Thermal power spectral density P+[W/Hz] 
in a TEM transmission line. 

 The figure suggests there is a white-noise region for frequencies f where hf kTo.  This 
inequality is called the Rayleigh-Jeans approximation and applies to the low frequency end of 
the spectrum, or typically the radio spectrum as opposed to the optical spectrum.  The transition 
frequency fo between these two regions is temperature dependent, where: 

   fo kT / h    (2.1.15) 

Equation (2.1.15) says that the transition frequency fo(GHz) is approximately 20 times the 
temperature T of the object in degrees Kelvin.  This transition frequency at normal 300K 
temperatures is approximately 6 THz, in the infrared region. 
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 A simple expression for the thermal power spectral density in the Rayleigh-Jeans limit can 
be found by replacing the exponential in Equation (2.1.14) using the series expansion 

ex 1 x x2 2! ...  ~ 1 x for x <<  1.  This results in the expression for power spectral 
density in the Rayleigh-Jeans limit: 

   1P f WHz kT for hf<<kT    "Rayleigh-Jeans limit" (2.1.16) 

 In the Rayleigh-Jeans limit it becomes trivial to compute the total thermal power within 
some bandwidth B[Hz].  In this limit the thermal power propagating down a single-mode 
transmission line from a matched load at temperature T is: 

   P kTB watts   (2.1.17) 

This equation is widely used in characterizing radio systems. 

2.1.2.  Thermal radiation in space

 The intensity of thermal radiation propagating in three-dimensions in free space can be 
found using a similar derivation but beginning with a three-dimensional lossless resonator in 
thermal equilibrium at temperature T.  In this case we relate the energy density spectrum W(f) 
[Jm-3Hz-1] to the thermal radiation intensity  I [Wm-2Hz-1ster-1].

 To find the energy density spectrum W(f) we modify (2.1.1) by dividing by resonator 
volume instead of by the transmission line length: 

   
photons energymodes 1W f

Hz mode photon vol.
 (2.1.18) 

This time our resonator is a slightly lossy rectangular conducting box of dimensions a b d.
Resonances in such a box have integral numbers of half wavelengths in each of the three 
dimensions, where we assume m, n, and p half wavelengths are associated with the dimensions a, 
b, and d, respectively.  Thus a m y 2, b = n x 2, and d = p z 2.  The resonant frequency 

(Hz) for the mode m, n, p is then: 
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f  (2.1.19) 

This expression for resonant frequency is readily derived by substituting the expression for a 
uniform planewave, 
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into the wave equation: 
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The operator 2 sums the second spatial derivatives with respect to each of x, y, and z, yielding: 

   22 2 2 2 2
x y z o o ok k k k  = 2 f c  (2.1.22) 

Since x xk 2 ,  where x 2b n ,  Equation (2.1.19) follows directly from (2.1.22). 

 We can represent (2.1.19) graphically as shown in Figure 2.1-5 

Figure 2.1-5 Spectral density of resonant frequencies of a cavity. 

The frequency fm,n,p is equivalent to the radial distance of the m, n, p node from the origin in the 
figure, where each node corresponds to one combination of the quantum numbers m, n, and p.  
Each such node corresponds to both a TE and a TM resonance, where we may think of the 
rectangular cavity as a waveguide propagating the TEm,n and TMm,n waveguides modes inside a 
waveguide of dimensions a b.  The dimensions of each unit cell in the figure are c/2a, c/2b, 
and c/2d, as suggested by (2.1.19). 
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 If the mode numbers are high, then to a good approximation the number of resonant modes 
falling within a frequency interval df is simply the volume of a thin spherical shell of thickness 
df, as suggested in Figure 2.1-5.  The number of modes is that volume divided by the volume per 
unit cell, multiplied by two to account for both the TE and TM modes associated with each 
combination m, n, p.  That is, the number of modes in such a shell are: 

   df
Hz

modes
dfV
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8
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22
 (2.1.23) 

where the volume V of the resonator is abd.   

 Substituting (2.1.23) into (2.1.18) yields the expression for the thermal energy density
spectrum W(f): 

   
2 3

3 hf kT 3 hf kT
8 f 1 8 hfW f V hf 1 V

c e 1 c e 1
 [Jm-3Hz-1] (2.1.24) 

 The energy density spectrum W(f) can now be related to the radiation intensity I( , ,f) by 
imagining a thin slab of unit area and thickness  which contains W [J/Hz].  If the radiation in 
the slab is in thermal equilibrium at temperature T, and then radiates away without replacement 
at all angles  from the normal, then we may compute W  in two ways: 

   
v

W W f dV I f  dA dt d    J Hz  (2.1.25) 

At angle , the projected area of the slab is cos  and the intensity is Io.  Because the radiation 
escapes from the slab without replacement, the pulse in any direction lasts for /(c cos )
seconds.  (2.1.25) then becomes: 

   3 hf kT
o3 4

8W hf e 1 I  cos c  cos d
c

 (2.1.26) 

 Planck’s radiation law for the intensity of blackbody thermal radiation then follows directly 
from (2.1.26): 

   3 hf kT
oI f , , 2hf e 1  [Wm-2 Hz-1 ster-1] (2.1.27) 

In the low frequency limit where hf kT,  Planck’s law for thermal radiation reduces to the 
Rayleigh-Jeans law:
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   o 2
2kTI f , ,  [Wm-2 Hz-1 ster-1] (2.1.28) 

The frequency dependence of Planck’s law and its Rayleigh-Jeans approximation is suggested in 
Figure 2.1-6. 

Figure 2.1-6 Wavelength dependence of Planck’s radiation law. 

 Planck’s law peaks in the microwave region for cryogenic temperatures, and moves into the 
infrared band for normal environmental temperatures. The peak shifts into the visible band at 
furnace temperatures, moving from redhot to whitehot as temperatures climb towards solar 
values of thousands of degrees.  In the Rayleigh-Jeans region the intensity (Wm-2 Hz-1 ster-1) is 
directly proportional to kinetic temperature and inversely proportional to the square of the 
wavelength.  This thermally linear region is evident in Figure 2.1-6. 

 We might suppose there is a paradox in the frequency independence of thermal radiation 
found in (2.1.16) and the dependence found in (2.1.28), as illustrated in Figure 2.1-7 which 
shows a transmission line coupled to free space.   

Figure 2.1-7 Wavelength-dependence paradox for thermal radiation. 
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The resolution of the paradox is simple because in the Rayleigh-Jeans limit the intensity is kT 

[W/Hz] per mode in both transmission lines and free space; free space simply has 22  modes 
m-2 ster-1, where the factor 2 corresponds to the two possible polarizations, TE and TM.

 It is interesting to note that thermal radiation in a TEM cavity possesses kT/2 Joules per 
degree of freedom, the same equilibrium value exhibited by particles in Brownian motion.  This 
can be easily shown by noting the average energy per mode is simply proportional to the average 
number of photons in a mode j, and equal to: 

   jj hf kT
1hf n hf kT J mode

e
 (2.1.29) 

Since each mode has two degrees of freedom, proportional to sin t and cos t, each degree of 
freedom has average energy kT/2.   

2.1.3.  Thermal noise in circuits

 Thermal noise can originate from resistors as well as from transmission lines and free space.  
For example, consider the resistor R matched to a transmission line as illustrated in Figure 2.1-8. 

Figure 2.1-8 Thermal noise voltages (Johnson noise) produced by resistors. 

 The resistor R can be replaced by a passive resistor R and a thermal noise voltage source 
producing an rms noise voltage en.  This resistor may then be coupled to a bandpass filter of 
bandwidth B Hertz by a lossless matched transmission line having impedance Zo = R.  The 
thermal noise power reaching resistor R at the righthand side at 0 K is kTB watts, which equals 

R2e 2
n  because within the bandwidth B the thermal noise voltage is divided across the two 

resistors R in series.  Solving for the rms thermal noise voltage en we find: 

   Hz)B(in voltskTBR4noisethermalen  (2.1.30) 
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 The expression for thermal noise, also known as Johnson noise, in (2.1.30) can, for 
example, easily yield the thermal noise at the input of a 50-ohm input amplifier with a bandwidth 
of 100MHz and an equivalent temperature of 300K: 

   v1.950103001038.14e 83
n  (2.1.31) 

Thermal voltages can become quite substantial across large resistors; for example, (2.1.31) yields 
9.1 mv for R = 50 M ohm. 

 Lossy media such as transmission lines can also radiate, as suggested in Figure 2.1-9. 

Figure 2.1-9 Thermal radiation emitted by lossy TEM transmission lines. 

We assume a slightly lossy TEM transmission line is terminated at both ends with matched loads 
of impedance Zo, and all are in equilibrium at temperature T K.  In equilibrium the power P+

moving to the right must everywhere equal kT, even though a short lossy segment of length dz 
absorbs some of that power, and propagates to the right kTe- dz.  To maintain thermal 
equilibrium the short segment dz must therefore emit sufficient radiation to maintain the 
equilibrium kT.  Since dz is quite small, we can truncate the power series expansion for the 
exponential to find the emission term: 

   - dzEmission W Hz =kT 1-e kT 1 1 dz  kT  dz  (2.1.32) 

Since the emission by the thermal line does not depend on the intensity of the radiation passing 
through it, we can use (2.1.32) to calculate the thermal emission emerging from a transmission 
line which has a nonuniform temperature distribution.  The output thermal power spectral density 
kTout equals the attenuated input emission, plus emission contributed by each incremental 
segment of the line, as characterized by (2.1.32), and attenuated by the length of line between its 
source and the output.  Thus: 

L

dz

Zo Zo Zo

slightly lossy 

P+ = kT kT e- dz + emission = kT in equilibrium 
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L L

o z
Ldz dz

out in o
kT kT e +k T z z e dz  (2.1.33) 

This expression can be simplified by recasting it in terms of an equivalent temperature Tout and 

optical depth
o
z dz : 

   deTeTT
odz

inout
max

L
o  (2.1.34) 

where max o

L
dz .  Equation 2.1.34 is the equation of radiative transfer and applies not only 

to TEM transmission lines, but also to propagation of waves through free space and other 
transmission media.  A simplification which applies to transmission lines of constant temperature 
and optical depth  is: 

   out in lineT T e T 1 e   (2.1.35) 

 Consider the simple example illustrated in Figure 2.1-10 of a receiver connected to an 
antenna viewing cold space, for which the equivalent thermal temperature (brightness 
temperature) is 3K. 

Figure 2.1-10 Effect of a lossy transmission line on antenna signals. 

If the optical depth  of the transmission line is zero, then (2.1.35) suggests the output 
temperature Tout would be 3K in this case.  If  = , then Tout = 300K.  If the transmission line 

exhibits 2 dB loss, then e 10 2 10 0.63, so that Tout 3 0.63 300 1 0.63 113K.

2.1.4.  Shot noise

 Perhaps the second most important type of noise in addition to thermal noise is called shot 
noise, because it sounds like falling shot.  One way to produce shot noise is illustrated in Figure 
2.1-11 for a vacuum tube diode.

300 K
3 K

?KToute-
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Figure 2.1-11 Shot noise production by discrete electron conduction in a vacuum tube. 

The current flow through this or other types of diode consists of multiple current pulses, the 
integral of each being one electron charge.  Usually these electrons move across the diode 
independently in Poisson-distributed fashion.  The average current is the charge on an electron 
times the average number of electrons passing per second.  The following derivation of the shot-
noise power density spectrum requires these electron transits to be independent, which excludes 
high-current vacuum tubes where the current flow is smoothed by electrons piling up in the 
transit path so as to modulate the electric fields seen by the individual charge carriers.  Under the 
assumption of independent electron arrival times it is a straightforward matter to calculate the 
power spectral density i(f) of the current i(t) as the Fourier transform of the current’s 
autocorrelation function i( ).

 Although it can readily be shown that the following result is true for any shape of current 
pulse i(t) associated with a single electron, the derivation is trivial if we assume it has a boxcar 
form, as illustrated in Figure 2.1-12. 

Figure 2.1-12 Idealized current pulse shape for calculating shot noise in diodes. 

 The autocorrelation function i( ) can be found as suggested in Figure 2.1-13. 
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Figure 2.1-13 Autocorrelation function i( ) of a Poisson-distributed series of boxcar current 
pulses corresponding to independent electron transits. 

The constant term in the autocorrelation function is associated with the possibility that the 
current pulse e/  from one electron will overlap a current pulse from another electron, the 
probability of which is , where  is defined as the average time between current pulses, i.e. 

1 n .

 The power spectral density i(f) has both a DC part an AC part, as shown in Figure 2.1-14. 

Figure 2.1-14 Shot-noise power spectral density for an average current 

If we are interested in signal components below frequencies of ~1  Hz , then we will incur 

additive shot noise associated with i(f) within the bandwidth B.  The white-noise portion of the 
shot noise equals the integral under the triangular impulse illustrated in Figure 2.1-13, which is 

2 2ne ei C s .  Therefore the variance 
i AC

2  associated with the shot noise within a bandwidth 

B Hz is the double-sided integral of the power spectral density ei  over the bandwidth B, yielding 
the standard shot noise variance:
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 Consider a simple example where the output voltage across a 5-K  resistor is being 
measured within a one-megahertz bandwidth B and where the one-milliampere average current 
through the resistance R is limited by a diode that passes electrons with Poisson-distributed 
arrival times.  The rms shot noise across the resistor R is: 

   v rms shot
i AC

2 R 0.1 mv  (2.1.37) 

This can be compared to the Johnson noise for T = 300K, given by: 

   v rms thermal 4kTBR 0.01 mv   (2.1.38) 

The average voltage across the given output resistor is 3iR 10 5K 5 volts , very large 
compared to the ~0.1-mv Johnson noise, and large compared to the ~0.1-mv shot noise.  
Depending on the system parameters, either the thermal noise or the shot noise may actually 
dominate. 

 Although shot noise can consist of well-separated impulses, more generally the electron 
arrival rate is so great that their pulses substantially overlap.  The voltage at any instant then is 
the sum of independent random events which, by the central limit theorem, approaches a 
Gaussian distribution as the number of overlapping events increases.  Thus shot noise is typically 
Gaussian white noise below some frequency and is therefore indistinguishable from Johnson 
noise in most practical situations. 

2.2 POWER SPECTRAL MEASUREMENT OF RADIO SIGNALS 

2.2.1  Measurement of thermal power

 Measurements of power (by a radiometer) or power spectral density (by a spectrometer) are 
perhaps the most fundamental of observations.  For example, Morse code is communicated by 
sending dots and dashes separated by periods of silence; this is a form of on-off keying.  The task 
of the receiver is to determine whether the power level at any instant corresponds to transmission 
or silence, where the noise is generally dominated by Johnson or shot noise in the absence of 
interference.  Frequency-shift-keyed transmissions jump from frequency to frequency, typically 
conveying binary information to receivers observing the power in each of two or more frequency 
channels perturbed by additive Gaussian noise.  Radio astronomers and other observers of the 
physical environment or telecommunications activity frequently wish to measure power spectral 
densities, and may use a variety of spectrometers for this purpose.  The design and performance 
of such systems is the subject of the following section. 
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 One standard objective is measurement of the power in an incoming signal in a defined 
bandwidth of B Hz, averaged over a period of  seconds.  A standard system for making such 
measurements is called a total power radiometer.  It simply computes the average value of the 
square of a voltage after it passes through a bandpass filter of bandwidth B, as suggested in 
Figure 2.2-1.  Thus the total power radiometer simply computes the definition of average power 
over some time interval  which characterizes the impulse response h(t) of the output filter 
(typically a boxcar filter of duration ).

Figure 2.2-1 Total power radiometer block diagram. 

 Assume the power spectral density PA entering the antenna is simply kTA watts per Hertz, 
where TA is the antenna temperature as seen from the antenna output and is the parameter we 
wish to measure.  The Gaussian white noise PR added by the radiometer due to thermal and shot 
noise processes is characterized by kTR.  The sum k(TA+TR) then passes through the bandpass 
filter of width B Hz.  The voltage waveform entering the filter is suggested in the upper left hand 
corner of Figure 2.2-2, while vi(t) emerging from the filter is suggested by the more nearly 
monochromatic waveform illustrated in Figure 2.2-2.  The detected voltage vd(t) emerging from 
the square law device, and the output voltage vo(t) representing the estimated received power 
emerging from the lowpass filter characterized by its impulse response h(t), are also shown in 
Figure 2.2-2.  Because the output voltage is the smoothed estimate of the square of the bandpass 
signal, it is proportional to TA + TR.  The lowpass filter averages many independent cycles of the 
detected voltage and becomes Gaussian by virtue of the central limit theorem, as illustrated in the 
bottom graph of Figure 2.2-2.   
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Figure 2.2-2 Signal processing progression in a total power radiometer. 

 We may calculate the sensitivity of the total power radiometer by evaluating the rms output 
voltage vorms  and then expressing it terms of equivalent degrees Kelvin, where the output 

voltage has been calibrated in terms of the desired antenna temperature, or perhaps in some other 
units.  If antenna temperature is the desired output parameter, then the receiver sensitivity is 
generally expressed in terms of Trms, where: 

   rmso
rms

o

A

v
T  =  

v
T

  (2.2.1) 

where o Av T  calibrates voltage fluctuation in terms of temperature.  To evaluate (2.2.1) we 

first need to calculate ov  and 
rmsov , where both can be found from the power spectral density 

o(f) of the output signal vo(t).  The desired vorms  can be found from the AC portion of the 

power spectral density o(f) of the output voltage, while ov  is the DC component of o(f).

o(f) can readily be found, as explained below, from the power spectral density of the detector 
output, which is the Fourier transform of the detector autocorrelation function. 
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 To find i(f) we begin by finding the detector voltage vd(t) and its autocorrelation function 
d( ), where: 

   2 2
d d d i iE v t v t E v t v t  (2.2.2) 

Since vd(t) is not Gaussian, computing its autocorrelation function is difficult.  Fortunately vi(t)
and vi(t - ) are jointly Gaussian random variables with zero mean (abbreviated JGRVZM).  In 
this special case we can compute the expected value of the product of four such JGRVZM using: 

   E wxyz E wx E yz E wy E xz E wz  E xy  (2.2.3) 

 It easily follows from (2.2.2) and (2.2.3) that: 

   
22 2 2 2

d i i i i i iv t v t 2  v t v t 0 2  (2.2.4)

where the overbar is an abbreviation for expected value, and we are taking advantage of the fact 
that the noise signals we are analyzing here are ergodic, which means that time averages of the 
products of two signal samples (e.g. sampled at times t and t- ) equal the ensemble average of 
the same product. Since the Fourier transform of the product of two time functions equals the 
convolution of their transforms, we can readily compute the Fourier transform of (2.2.4): 

   2
d i o i if 0  u f 2 f f  (2.2.5) 

 To compute d(f) we first must find i(f), where: 

   2
i i i eff0 v t f df kT B  (2.2.6) 

where the effective system temperature Teff is defined as TA + TR, and where the power spectral 
density of the input signal d(f) is shaped by the assumed boxcar bandpass filter, as illustrated in 
Figure 2.2-3. 
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Figure 2.2-3 Power spectral density of a total power radiometer 
with bandwidth B Hz. 

Equation (2.2.5) for d(f)  includes an impulse plus the convolution of i(f)  with itself, which 
can easily be found from (2.2.6) and examination of Figure 2.2-3, as illustrated in Figure 2.2-4.  
The output signal vo(t) is the convolution of the detected signal vd(t) with the impulse response 
h(t) of the output filter of the total power radiometer: 

   o dv t v t h t    (2.2.7) 

Figure 2.2-4 Power spectral density of the detected signal 
in a total power radiometer. 

Therefore the output power spectral density is: 

   2
o d(f ) (f ) H(f )   (2.2.8) 

 The output filter transfer function 
2

H f  can be easily found, as suggested in Figure 2.2-5 
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Figure 2.2-5 Integrator impulse response h(t) and its spectral 

transfer function 2H(f ) . 

To evaluate (2.2.8) for Figure 2.2-4 we need to know 2H(f )  for f = 0, and the total integral over 

frequency of 2H(f ) .  Note that generally B>>1/ , so that d(f) is approximately constant where 

H(f ) 0 .  The first quantity is easy to find: 

   j2 f 0 tH f 0 h t e dt A  (2.2.9) 

Thus the DC power emerging from the output filter is: 

   
DC

2 2
o eff of kT B A u f  (2.2.10) 

The variance of the fluctuating component of the output voltage is: 

   
AC AC

22
o o effP f df kT B H f df  (2.2.11) 

where we have used the fact that for most total-power radiometers the integration time  is 
sufficiently large that 1 B ; therefore only d f 0  is important.  By Parseval’s theorem: 

A

0 t f

f0

0/2 1/-1/ 2/

1/ 2/

h(t) j2 f 2H(f )e
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2 2 2H f df h t dt A  (2.2.12) 

 The desired sensitivity Trms for a total-power radiometer then follows from (2.2.1), 
(2.2.10), and (2.2.11): 

   
2 2

effAC eff
rms

eff ADC A

kT B AP kT A B
T K

kA BkT BA TP T
 (2.2.13) 

Therefore the total-power radiometer sensitivity is: 

   A R
rms

T T
T

B
  (2.2.14) 

This expression for sensitivity applies to any receiver employing a square-law detector of signals 
with additive Gaussian noise.   

 This expression (2.2.14) can readily be recomputed for other output integrators such as a 
conventional single-pole RC filter.  The impulse response h(t) for such a simple filter is 
illustrated in Figure 2.2-6. 

Figure 2.2-6 Impulse response of an RC integrator. 

For this RC filter we simply recompute (2.2.8) and note: 

   H f 0 h t dt   (2.2.15) 

0

1

h(t)

t

e-t/
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2 2H f df h t dt 2   (2.2.16) 

In this case,  

   Trms
TA TR

2B
  (2.2.17) 

Although this filter provides slightly greater sensitivity, it is at the expense of a longer memory, 
so large transients may take several time constants to fade away.   

 Such total power radiometers can be quite sensitive.  Consider a typical radio astronomy 
receiver looking at cold sky where TA + TR = 30K; for a 100-MHz bandwidth B and 1-second 
integration the sensitivity is: 

   Trms 30 108 1 sec 0.003 K (2.2.18) 

This sensitivity can be improved by a factor of 10 if we average the data for 100 seconds. 

 A contrasting example for which very poor sensitivity suffices is an amplitude modulated 
(AM) radio for which low-cost electronics readily provide effective system temperatures of 
10,000K or better, over nominal bandwidths B of 10 kHz for time constants  of ~10-4 seconds 
so that:

   Trms 104 104 10 4 104K (2.2.19) 

Even though this sensitivity appears quite poor, it is often overwhelmed by interference from 
adjacent AM broadcasters, or static from lightning or household appliances.  Thermal noise is the 
sound we hear on AM radios when we are tuned between stations and free from station 
interference.   

2.2.2  Measurement of thermal power using a sampled system

 A more intuitive understanding of the sensitivity equation (2.2.14) can be derived by 
analyzing the sampled-pulse version of the same total-power radiometer, as suggested in Figure 
2.2-7.
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Figure 2.2-7 Architecture of a sampled total-power radiometer. 

The sampling impulses i(t) are spaced at intervals of T seconds, where T = 1/2B is the Nyquist 
sampling rate.  If T < 1/2B, then the sampling theorem shows that adjacent pulses will have 
correlated amplitudes, and if T > 1/2B, some of the information in the incoming signal TA will 
be lost.  Note that if the signal extends from zero Hertz then Nyquist sampling corresponds to 
two samples per period of the highest frequency component present.  The boxcar averages 

T 2B  pulses, each of amplitude vd.  If this number 2B  is much larger than 1, then the 
output voltage vo(t) approaches a Gaussian distribution by the central limit theorem, and the 
variance of the output voltage is: 

   Variance of vo 2B d
2   (2.2.20) 

The variance d
2  of the detected voltage vd is: 

   
2 2 2 222 2 2 2 4 2 2 4 2

dd d i i d i i i i i  v v v v v 2 v v v v  (2.2.21) 

We may recall that if x is a jointly Gaussian random variable of zero mean, then: 

   n nx 1 3 5 n 1 ,  if n even; x 0,  if n odd  (2.2.22) 

 If we define the constant a such that: 

   2 2 2
i eff v aT x  and x 1  (2.2.23) 

then (2.2.21) becomes: 

   
2

2 4 2 2 2 4 2 2 2
d i i eff eff

3 1

v v T a x x 2T a  (2.2.24) 

The variance of the output voltage vo follows from (2.2.20) and (2.2.24): 

   2 2
o effvariance of v 2B 2T a   (2.2.25) 

TA

TR

0 B f
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vi vd

0 T t
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It can be seen from Figure 2.2-7 that the average value of ov  of the output voltage is: 

   2
o i effv 2B v 2B T a   (2.2.26) 

Therefore it follows from (2.2.21), (2.2.25), and (2.2.26) that: 

   o eff
rms eff

o A

variance of v T a 4B
T T B

2B av T
 (2.2.27) 

This result, which is the same as (2.2.14), now has a more intuitive interpretation, where the rms 
sensitivity approximately equals the fluctuations associated with Teff divided by the square root 
of the number of independent samples that were averaged, 2B .

2.2.3  Power measurement errors due to gain fluctuations, and the remedies

Figure 2.2-8 Effects of gain fluctuations on the output of total-power radiometers. 

 Many total power radiometers have sensitivities far worse than those suggested by (2.2.27) 
as a result of gain fluctuations g(t) in the amplifier train.  This problem is illustrated in Figure 
2.2-8, where the receiver output vo(t), which is proportional to Teff, varies due to gain 
fluctuations g(t) to a degree that overwhelms the thermal noise. 

A simple expression for receiver sensitivity in the presence of gain fluctuations results when the 
receiver gain can be approximated as: 

   g t G 1 m t ,  m 1  (2.2.28) 

Since the gain fluctuations are generally independent of the thermal noise, the variances add so 
that the effective receiver sensitivity is: 

0
t

2 2
effrms m T

eff A RT T T g(t)
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eff

2 2 2 2
s thermal eff

1T T m T T m
B

 (2.2.29) 

 The potential seriousness of gain fluctuations is suggested by noting that a 0.1-percent gain 
fluctuation for a system having Teff of 1000K is 1K, large compared to the 3-mK sensitivity 
suggested for the example given in Equation (2.2.18).  Gain fluctuations are particularly 
prevalent in the very high gain amplifier chains employed in high sensitivity receivers, where 
these gains can exceed 100 dB.  Gain fluctuations often arise from small thermal fluctuations or 
from semiconductor instabilities. 

 A simple widely used remedy for gain fluctuations is called “synchronous detection,” and is 
generally implemented as suggested in Figure 2.2-9. 

Figure 2.2-9 Synchronous detection in a total-power radiometer. 

Such synchronous detectors are often called Dicke radiometers, named after their developer at 
the MIT World War II Radiation Laboratory.  The upper integrator is connected to the output 
voltage vo(t) every time the input switch is connected to the antenna.  A square-wave generator 
moves the pair of switches synchronously between their upper and lower positions at both input 
and output.  If the calibration temperature Tcal is slightly different from the antenna temperature 
TA, then the output voltage exhibits the form shown in Figure 2.2-10. 

receiver
+

-

TR

TA

Tcal

Zo

vo(t)
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Figure 2.2-10 Receiver voltage prior to the output synchronous detector switch. 

 In the special case where the input is balanced so that Tcal = TA, then the two output 
integrators will have the same average voltage and the average (noise-free) output will be zero, 
independent of gain fluctuations in the receiver.  Any such gain fluctuations can operate only on 
the difference between TA and Tcal, and not on the total Teff.  The rms fluctuations of this 
difference between the two output integrators is independent of the way in which the output 
switch is operated, provided the switch is operated sufficiently rapidly that the signal vo(t) is 
highly correlated between time intervals.  Although the thermal contribution to the output 
fluctuations is unchanged by splitting the output integrator and adding a switch, a 50-percent 
duty cycle results in the antenna being observed only half the time.  As a result the output signal 
amplitude is reduced by a factor of two, and the denominator of (2.2.1) is also reduced by a 
factor of two, resulting in: 

   
Dickerms effT 2T B    (2.2.30) 

 This factor-of-two penalty associated with a 50-percent duty cycle synchronous detector can 
be reduced by observing the reference signal less than half the time.  To provide equivalent 
smoothing of the reference signal at the output, however, the integration time of only that 
integrator should be lengthened appropriately.  The gains associated with the two integrators may 
have to be adjusted also, depending on the choices of these two integrations times.  Both 
integration times should be shorter than the characteristic fluctuation time constant for the 
amplifier gain and the desired signal, but much longer than the period of the synchronous 
detector.

 For receivers with very large bandwidths the variance of the output signal vo(t) shown in 
Figure 2.2-9 is sometimes sufficiently large that it is useful to reduce it to prevent saturation of 
the output amplifier.  One way to do this is to insert a narrowband filter tuned to the Dicke 
switch frequency, typically 1 kHz, but this also exacts a small penalty because the desired 
square-wave signal is also partially filtered out, resulting in: 

   rms effT T B
2

  (2.2.31) 
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0 t

integrated by upper integrator

integrated by lower integrator 
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2.2.4  Correlation receivers

 Another widely used receiver configuration is that of the correlation radiometer, illustrated 
in Figure 2.2-11, which is used in interferometers, total-power radiometers, and in matched-filter 
receivers used for communications and radar. As shown in the figure, the correlation radiometer 
can avoid the effects of gain fluctuations because the average product of the two independent 
amplifier noises na and nb is zero, so gain fluctuations cannot impact their contribution.  If the 
signals arrived from two independent antennas, then such a system can be used as an 
interferometer as discussed later.  If the incoming signal from the antenna is fed only to the first 
amplifier, and the signal from the other side is noise free, then the resulting analysis is that of the 
matched-filter receiver, which is also discussed later. 

Figure 2.2-11 Architecture of a correlation radiometer. 

 The analysis below follows that of the total power radiometer with only minor variations.  
We may begin by computing the autocorrelation function of the multiplier output m (t): 

   
1 1 2 2

m a b a b

1 1 2 2
a b a b

E v t v t v t v t

S S S S
         E n n n n

2 2 2 2

 (2.2.32) 

Equation (2.2.32) employs a simplified notation where the subscripts 1,2 refer to the times t and t 
- , respectively.  Note that the incoming signal power associated with S(t) is divided in two by a 
matched power divider.  This implies that the voltage in each path is reduced by 1 2 , assuming 
the impedances of the two outputs are the same as that of the input line. Because the four 
variables multiplied in (2.2.32) are jointly Gaussian random variables of zero mean, we may 
again use (2.2.3) to yield: 

   2 2 2
m s s s n n

1 10
4 2

 (2.2.33) 
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The power density spectrum m(f) can be found from the Fourier transform of (2.2.33): 

2
m s s s s n n n

1 1f 0 f f f f f f f
4 2

 (2.2.34) 

The DC power is associated with 2
s 0 f  and the AC power is associated with the other 

terms in (2.2.34).  Using the methods in (2.2.11) and (2.2.12), we can use (2.2.1) to show

   ac eff
rms

dc A

P T
T

P T B
  (2.2.35)  

where:

   2 2 2
eff A A R RT T 2T T 2T   (2.2.36) 

The rms sensitivity of Equation (2.2.35) reduces to R2T B  for the weak-signal case where 

A RT T , and to the limit RT B  for the strong-signal case where A RT T .

2.2.5  Measurement of power spectra

 Such total power radiometers can also be combined or reconfigured to measure power 
spectra of unknown signals. In general, spectral analysis is obtained by splitting the bandwidth 
into multiple frequency bands shaped by individual filters, and then detecting each band 
separately.  The receiver configuration employed typically depends on the total bandwidth, the 
number of spectral channels desired, and the absolute frequencies to be monitored. 

 The most extreme case is that where the bandwidth to be observed exceeds that of available 
antennas or amplifiers.  In this case separate systems are required.  More often the antenna 
bandwidth is adequate but that of the amplifiers is not.  In this case passive frequency dividers 
are used between the antenna and the amplification or detection stage.  If amplifiers of adequate 
bandwidth are available, the signals are generally amplified before they are detected or split 
further.  In rare cases the signal is sufficiently large compared to detector noise that amplifiers 
can be omitted.  If the bandwidth is sufficiently narrow, digital spectral analysis can be 
employed, as discussed later. 

 The most important property of passive filters used for spectral measurements is that they be 
low-loss to minimize their contributions to Johnson noise, and that they have appropriately 
shaped frequency bandpass characteristics.   

 Figure 2.2-12 shows a typical channel-dropping RLC filter chain. The operation of the RLC 
filter circuit in Figure 2.2-12 is easily understood.  If each of the series and parallel resonators is 
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nearly lossless (high-Q), then at frequencies sufficiently remote from any resonance fi the 
parallel resonators become short-circuits and the series resonators become open circuits, thereby 
connecting the input directly to the output load Zo.

Figure 2.2-12 Multistage passive channel-dropping RLC filter chain. 

At the resonant frequency f2 the associated parallel resonator becomes an open circuit, thereby 
shunting the input signal through the series resonator to the output port for f2, where the series 
resonator approximates a short circuit.  The same is true for any of the other frequency taps in 
the chain, and the separate channel dropping filters can be connected in any order.  They begin to 
interfere principally when the frequency bands begin to overlap significantly.

 The same concept can also be applied to chains of waveguide filters as suggested in Figure 
2.2-13.

Figure 2.2-13 Channel-dropping filters implemented using waveguides. 

When the second cavity is resonant at f1 the field amplitudes inside build to levels sufficient to 
produce a virtual short circuit in the plane of the aperture connecting the wave guide to the 
cavity:  one-quarter wavelength down the waveguide this appears as an open circuit, analogous 
to the behavior of the parallel resonator in the RLC channel-dropping filter system.  If the first 
cavity is resonant at this same frequency f1 and if both its input and output apertures exhibit the 
same external Q, then all of the power input at f1 can be shunted to a matched load at the filter 
output.
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 Standard frequency division techniques used at infrared and visible frequencies are 
suggested in Figure 2.2-14, including prisms, diffraction gratings, and cascaded dichroic 
beamsplitters. 

Figure 2.2-14 Channel-dropping filters implemented using a prism, diffraction grating, and 
cascaded dichroic beamsplitters. 

Most materials like glass or plastic are dispersive as a result of the frequency-dependent 
permittivity associated with bound electrons.  For example, blue light typically interacts more 
with these electrons and is refracted more than red light.  Diffraction gratings having lines ruled 
with separations on the order of a wavelength can diffract different frequencies in different 
directions with high efficiency and low loss, and are commonly used at infrared wavelengths 
where prisms are not available.  Diffraction gratings become highly dispersive if the lines are 
ruled at extremely close spacings.  Dichroic mirrors typically pass frequencies above or below 
some cutoff frequency and reflect the rest of the spectrum.  In Figure 2.2-14 all frequencies 
above f1 are reflected to one side by the first dichroic mirror, while those above f2 but below f1
are shunted aside by the second mirror.  Because the insertion loss of such dichroic mirrors can 
be large, typically no more than a few are cascaded at any one time.  For larger numbers of 
channels diffraction gratings are usually used. 

 cascaded dichroics beamsplitters

plane wave 

<f1 <f2

< fn
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red
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Figure 2.2-15 System for spectral analysis using analog 
autocorrelation and delay lines. 

 Digital spectral analysis is possible using conventional Fourier transform chips 
manufactured at low cost for digital signal processing (DSP) purposes.  We can also use chips 
that compute related transforms, such as the discrete-cosine transform, and others.  In general the 
bandwidths of the frequency channels extracted in this fashion are a small fraction of the 
clockspeed of the chip because of the large number of computations required.  Highly parallel 
structures can increase both the number of channels and their bandwidths, but the clockspeed of 
the circuit remains a significant barrier. 

 For many purposes much less expensive digital circuits can be employed.  To understand 
them, first consider the use of autocorrelation functions as an intermediate computational step in 
an analog spectral analysis system, as suggested in Figure 2.2-15.  The illustrated circuit first 
defines an overall bandwidth B which is to be further divided into spectral channels by 
autocorrelation analysis.  The local oscillator and preamplifier translate this band to low 
frequencies where it can be introduced to a delay line taped uniformly along its length at N 
points, where the maximum delay is NT M .  The resulting spectral resolution and coverage 
are limited by the delay line length and number of taps. The system in Figure 2.2-15 then 
computes the autocorrelation function ( ) for an integration time much longer than M.  A 
separate computer transforms this output into (f), typically in units of watts/Hertz. 

 Consider first the effects of the finite length of the delay line, where the maximum delay 

M NT.  The observed autocorrelation function v
ˆ  is then the true autocorrelation 
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function v( ) times the weighting function W( ), which consists of a boxcar of value unity for 
delays  ranging between - M and + M.  This boxcar weighting function controls the spectral 
response of this autocorrelation system as suggested in equation (2.2.36).

   
v v

M

v v

ˆ               W

               

ˆ f  =     f      W f    

 (2.2.36) 

Figure 2.2-16 illustrates this spectral response, where the first null appears at M1 2  Hz  from the 
center frequency of each channel and the response is a sinc function with rather high sidelobes. 

Figure 2.2-16 Spectral response of an autocorrelation receiver 
with a finite-length delay line. 

 The consequences of sampling an infinite delay line by an impulse train i(t) with a period of 
T seconds are suggested by equation (2.2.37). 

   

v v

v v

ˆ     =            i t   

                             

ˆ f        f        I f
 (2.2.37) 

Because the true autocorrelation function v(f) is sampled by the impulse train i(t), the resulting 
estimated power density spectrum v

ˆ (f )  is the convolution of the true power spectral density 

v
ˆ (f )  with the transformed impulse train I(f), a train of spectral impulses with spacing 1/T Hz.  

Unless the delay line is sampled sufficiently frequently, the estimated power density spectrum 
can be aliased as suggested in Figure 2.2-17. 
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Figure 2.2-17 Aliasing in autocorrelation receivers for 1 T 2B .

Thus, to avoid aliasing, the larger the bandwidth B to be analyzed, the shorter the time delay T 
between successive taps on the delay line must be.   

 To reduce the sidelobes in the spectral response associated with the weighting function W( )
and finite delay line length, it is common to apodize the weighting function by rounding off its 
corners.  For example, one common apodization is to replace the boxcar by the positive half of a 
cosine function.  Because the autocorrelation function is averaged for only a limited time before 
the Fourier transform v(f) is computed, both the autocorrelation function and the computed 
spectrum have additive noise, but this is generally equivalent to the noise incurred by 
comparable RLC filters acting on finite-duration random signals. 

2.2.6  Signal processing with clipped signals:  autocorrelators

 As a practical matter, arrays of analog correlators are never used because it is difficult to 
implement high quality analog multipliers without offsets and nonlinearities, which become 
important as integration times are increased.  Such correlators have found wide application, 
however, in digital systems where the signals are reduced to 1-bit hard clipped approximations 
before entering the delay line, as suggested in Figure 2.2-18.  Although more bits can be used, 1-
bit or 2-bit systems offer enormous savings in hardware complexity with little loss in noise 
performance. 
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Figure 2.2-18 Autocorrelation spectral analysis system for hard clipped signals. 

 Figure 2.2-18 suggests how hard clipping reduces the signal to a string of ones and zeros, or 
to +1 and -1.  We show below that the autocorrelation function for this clipped signal is related 
in a simple way to the true spectrum.  It also can be shown that the penalty in rms system 
sensitivity is no more than ~50 percent ( clip  1.5 optimum), and use of two bits instead of one 
reduces this small penalty further.  Because such clipping removes information about the total 
received power, it is necessary to have a separate total power measurement vo(t), as suggested in 
the figure.  Because the delay line is now handling one-bit signals, it can be implemented as a 
simple shift register, and each multiplier can be implemented with only a few logic gates.  The 
integrators become simple counters.  As a result very powerful digital correlation receivers can 
be implemented very compactly on silicon.  Autocorrelation functions for signals with multi-
gigahertz bandwidths can be computed in real time today.   

 That autocorrelation functions comprising averaged products of one-bit clipped signals are 
simply related to the power spectra of the original unclipped signals can be readily demonstrated.  
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The following suggests the general approach.  Let the input voltage at time t1 be x(t1) = x1, and 
sgn x be defined as +1 for x 0, and -1 when x 0, where x1 and x2 are jointly Gaussian 
random variables of zero mean.  Then the autocorrelation function of the signal x(t) is: 

2 2
1 1 2 2

2

x 2 x x x

2 1
x 1 2 1 2 1 21 2

1E sgn  x  sgn x sgn x  sgn x e dx dx
2 1

 (2.2.38) 

where t2 t1 and 1 2 vx x .   Considering the four possible combinations for the 

product sgn x1 sgn x2, we obtain: 

   

0

x 1 2 1 2 1 2 1 2
0 0

1 2 1 2
0

2 p x ,x dx dx 2 p x ,x dx dx

        =4 p x ,x dx dx 1

 (2.2.39) 

where we note that the second integral term in (2.2.39) equals twice the first integral minus one.  
By converting (2.2.38) to circular coordinates the exponent can be simplified, permitting (2.2.39) 
to be evaluated: 

   x
ˆ ˆˆ sin

2
  (2.2.40) 

where the estimated autocorrelation function x
ˆ  is computed for T seconds.   

 The estimate ˆ  is increasingly biased as x
ˆ  becomes less accurate because ˆ  is a 

nonlinear function of the observed x
ˆ .  For the special case where there are N delay-line taps 

and we use uniform boxcar weighting of the autocorrelation function together with spectral 
samples spaced at intervals of 1/2 M Hz, we can show that the number of independent spectral 
samples equals N.  In practice the number of delay line taps might be twice the number of 
spectral samples to account for apodization of the weighting function W( ) and to avoid aliasing 
associated with the skirts of the lowpass filter that defines the bandwidth B. 
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2.3  POWER AND NOISE PROPAGATION IN RECEIVERS 

2.3.1  Power and gain in circuits

 The building blocks comprising receivers are generally characterized in terms of their gain 
and noise figure, whereas signals are generally characterized in terms of their power spectral 
density and signal-to-noise ratio.  Relations governing these quantities in receivers are discussed 
here, together with circuits for canceling unwanted noise and interference.

 To begin, it is important to distinguish between different possible definitions for power 
observed at the junction between a circuit and its load LZ .  Figure 2.3-1 defines such a junction 

driven by a Thevenin equivalent circuit, for the generator which is characterized by its open 
circuit voltage Vg and its source impedance g ggZ R jX .

Figure 2.3-1 Thevenin equivalent circuit for a generator driving a load. 

 If we characterize the voltage v(t) at this junction for a monochromatic signal at frequency 

, where j t
ev t R Ve , and a similar definition is used for a phasor I representing the 

current flowing into the load, then we may simply characterize three types of power: 

   delivered e D
1P       R VI                            P
2

 (2.3.1) 

   L gavailable D A   P       max  P ,  i.e. if Z Z      P  (2.3.2) 

   
L g

exchangeable D EZ ZP   P                            P  (2.3.3) 

The delivered power PD is the power actually delivered to the load by the particular source that is 
present.  In contrast, the available power PA depends only on the source because we assume that 
the load is matched; PA is the maximum power extractable from the given Thevenin equivalent 
source.  Figure 2.3-2 suggests the dependence of this delivered power PD as a function of load 
resistance RL.
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Figure 2.3-2 Dependence of delivered power PD on load resistance RL for a positive and a 
negative source impedance Zg.

 Figure 2.3-2 shows that PD reaches a maximum value PA when gL eR R Z .  If a negative 

load resistor RL is connected to the source such that gL eR R Z , then the power flow from 

the load to the source becomes infinite.  Conversely, if the source has a negative impedance, then 
it can deliver infinite power to a matched load of positive impedance.  This issue is not purely 
academic, because many amplifiers are implemented by reflecting incoming signals from 
elements with negative resistances near their operating points; examples include parametric
amplifiers and some masers.  Because negative-resistance amplifiers are generally used near 
their stable operating point, we also define exchangeable power PE as the magnitude of PD for 
the case where the load is a conjugate match to the generator, as suggested in (2.3.3).

 Consider now an amplifier of gain G which connects a generator of impedance gZ  to a load 

LZ .  If we represent the input and output terminals of the amplifier by the subscripts 1 and 2, 

respectively, then we can simply define several different types of gain: 

   2

2

D
insertion I

D

P  with amplifier in
G G   

P  (without amplifier)
 (2.3.4) 
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power p
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P
  (2.3.5) 
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G G   

P
  (2.3.6) 
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P
G G   
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  (2.3.7) 

   2

1

E
exchangeable E

E

P
G G   

P
  (2.3.8) 

These definitions all yield the same gain if source, amplifier, and load are all matched to one 
another and have positive real-part impedances.  The distinction becomes important only when 
systems are mismatched, in which case the preferred definition of gain is GE, or its positive-
resistance equivalent, PA.  The advantage of these definitions for GA and GE is that they 
explicitly do not depend on the load impedance ZL, although they do depend on the generator Zg.
Hereafter we shall use only exchangeable power and gain in our discussion.

2.3.2  Noise figure

 Consider the amplifier illustrated in Figure 2.3-3.  We can characterize the amplifier in 
Figure 2.3-3 in terms of its gain G and its noise figure F, where the noise figure F can be defined 
in terms of the signal-to-noise ratios at the input terminals (1) and the output terminals (2).  
These signal-to-noise ratios are: 

   1 1 1 2 2 2SNR   S N ,  and SNR   S N  (2.3.9) 

where we define N1 as the exchangeable noise power spectrum at the input (1) and N2 as the 
same, but at the output (2).  Similarly, we define S1 as the exchangeable signal power spectrum 
at the input port (1), and S2 as the same, but at the output port (2). 
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Figure 2.3-3 Amplifier embedded in a linear circuit. 

 We can now define the noise figure F: 

   1 1 1
1 o o

2 2 2

SNR S N
F  ,  N   kT ,  T   290K

SNR S N
 (2.3.10) 

This definition governs commercial products and has legal force; see page 436 of the 
Proceedings of the IEEE for March, 1963.  Note that this definition explicitly employs an input 
noise temperature N1 of 290 K, regardless of the circumstances under which the amplifier might 
be used in practice. 

 In general, the output noise from an amplifier N2 is larger than the amplified input noise 
GN1 by an amount N2T introduced by the transducer, which we call transducer noise.  The noise 
figure F can be simply related to N2T by using the definition (2.3.10): 

   1 1 2T

11 1 T

S N N
F 1

N GGS GN N
 (2.3.11) 

Sometimes we characterize an amplifier by its excess noise figure, defined as F-1, where: 

   2T R R

1 o o

N kT G T
F 1   

N G kT G T
 (2.3.12) 

where (2.3.12) also defines the receiver noise temperature TR, which can be interpreted as 
suggested in Figure 2.3-4. 

1 2

F

GE

E gRecall G f Z

gZ

LZgV
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Figure 2.3-4 Noisy amplifier: three equivalent circuits. 

 The relationships defined by (2.3.12) are illustrated in Figure 2.3-4.  A noisy amplifier with 
input TA, gain G, and noise figure F can be represented in three different ways, as illustrated in 
Figure 2.3-4.  First, a noisy amplifier can be represented as a noiseless one preceded by addition 
of the equivalent receiver noise temperature TR ( K).  Noise temperatures of cryogenically 
cooled amplifiers are typically ~5-50K up to 10 GHz or more, and ~100-1000K for uncooled 
systems.  Alternatively, the same noisy amplifier can be represented by a noiseless system 
followed by addition of the transducer noise N2T.  Equation 2.3.12 quickly relates receiver noise 
temperatures TR to the corresponding noise figure F; for example, receiver noise temperatures of 
0K, 290K, and 1500K correspond to noise figures F of 1, 2, and approximately 6, respectively.  
Noise figures are often expressed in units of dB, so these three noise figures can also be 
characterized as 0, 3, and approximately 7.5 dB.   

 It is often useful to know the effective noise figure and gain of two or more amplifiers 
connected in series.  Figure 2.3-5 shows how an amplifier system of noise figure F1+2 and gain 
G1+2 results when an amplifier characterized by F2, G2 follows an amplifier characterized by F1,
G1.  The noise figure F1+2 follows from its definition:

   1 1
1 2

3 3

S N
F

S N
  (2.3.13) 

Figure 2.3-5 Characterization of two cascaded amplifiers. 

Our previous definitions for gain imply that the output signal power spectrum 3 1 2 1S G G S .  The 

noise power spectrum N2 at the output of the first amplifier equals the noise power spectrum at 

G ,  F  1

G ,  F  1

+

noiseless

G, F
TA

+
TA

N2T

TA

TR

F1,G1 F2,G2 F1+2,G1+2
1 2 3 1 3
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the input of the amplifier, kToF1, times the gain G1 of the first amplifier; this reflects the fact that 
noise figure definitions assume kTo is input to the amplifier, where To is defined as 290K.

 The noise power spectrum N3 at the output of the cascade has contributions from N2

amplified by G2 and from the excess noise introduced by amplifier 2: 

   3 2 o 1 1 2 2 oN G  kT F G G F 1 kT  (2.3.14) 

It follows from (2.3.14) that: 

3 3 1 2 1 1 2 1 2 2 o 1 o 1 2 1S N G G S G G F G F 1 kT S kT F F 1 G  (2.3.15) 

Equation (2.3.13) can be combined with (2.3.15) and the fact that kTo N1 to yield: 

   1 1 2
1 2 1

3 3 1

S N F 1
F F

S N G
  (2.3.16) 

 By extension we may readily find expressions for longer cascades of amplifiers.  For 
example, a cascade of three amplifiers can be handled by first cascading the first two, yielding an 
amplifier characterized by F1+2, as follows: 

   3
1,2,3 1 2

1 2

F 1
F F

G G
  (2.3.17) 

We may iteratively combine (2.3.16) and (2.3.17) to find a general expression for cascaded 
amplifiers having any number of stages: 

   32
1,2,... 1

1 1 2

F 1F 1
F F ...

G G G
  (2.3.18) 

 It is important to note that it is not obvious which sequence of two amplifiers will yield 
better noise performance.  Equation 2.3.16 shows that the combined noise figure F1+2 depends on 
both the noise figure F1 and the gain G1 of the first amplifier, as well as the noise figure F2 of the 
second.  Only by evaluating both F1+2 and F2+1 can we be certain which sequence is preferable.  
In general the lowest combined noise figure results when the amplifier with the lower noise 
figure is placed first, unless that amplifier has much lower gain than the other.   
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2.3.3  Superheterodyne circuits

 An important element in many receivers is a superheterodyne stage in which the signal from 
a local oscillator “L.O.” multiplies a signal before it is amplified at the intermediate frequency
“i.f. frequency”, which is the difference between the signal  and L.O. frequencies.  A 
combination of the L.O. and the multiplier is often called a “mixer”, characterized by Gc, Fc.
The system consists of an input bandpass filter which selects the frequency band to be down-
converted; this filter precedes the mixer and the following i.f. preamplifier, which amplifies the 
signals within the much lower-frequency i.f. passband, which is defined by the i.f. passband 
filter, all as illustrated in Figure 2.3-6. 

Figure 2.3-6 Superheterodyne circuit. 

 The frequency relationships between the various passbands in a superheterodyne system are 
suggested in Figure 2.3-7.  They result from the fact that multiplication of signals in the time 
domain is equivalent to convolution in the frequency domain.  Therefore the signal spectrum S1
input to the mixer is translated by the superheterodyne to the i.f. passband where it becomes the 
signal spectrum S2.  Alternatively, the input (often at radio frequencies, or “r.f.”) can be at 
frequencies above the local oscillator frequency fLO.  Since the mixer can readily down-convert 
power from either the lower or upper r.f. sideband, or both simultaneously, into the i.f. passband, 
a filter such as that illustrated in Figure 2.3-6 must be inserted in front of the mixer to define 
which sidebands enter the mixer. 

 Because the signal power generally loses strength in the mixing process, the gain Gc
associated with this conversion is generally less than unity, and we speak of its reciprocal, the 
conversion loss Lc of the mixer c c 2 1L 1 G S (i.f .) S (r.f .,  SSB) .  This definition for Lc and 

Gc explicitly applies to the single-sideband (SSB) case where only one of the input sidebands is 
of interest.  We further define the mixer noise temperature ratio R 2 ot N (i.f .) kT .  These 

definitions for conversion loss and noise temperature ratio for the mixer (often used by 
manufactures) can be introduced into the standard definition for noise figure to yield: 

S S

0 fL.O
f

fi.f.

S S

0 fi.f.
f

S1,N1 S2,N2

L.O.Gc,Fc

Gi.f.,Gi.f.

“i.f.”  “intermediate frequency” 

i.f. preamplifier
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   1 o1 1
mixer c r

2 2 1 c r o

S kTS N
F   L t

S N S L t kT
 (2.3.19) 

Expression (2.3.19) can then be combined with the cascaded noise figure formula (2.3.16) to 
yield the superheterodyne noise figure of the combined mixer and i.f. amplifier: 

   i.f .
mixer+i.f. amp. mixer c r c if c i.f . r

mixer

F 1
F F L t L F 1 L F t 1

G
 (2.3.20) 

In practice this combined noise figure is typically ~2-8 corresponding to ~3-9 dB, where typical 
values of tr are 1.2-1.4 and typical values for Lc are 2-6 dB; larger values are more common for 
low cost mixers or those operating above ~100 GHz. 

 The basic receiver architectures for both optical and radio frequency systems have now been 
introduced.  Whether they measure power by squaring the input signal, or correlate the input 
signal by multiplying it by a reference signal and integrating, they all begin with a bandwidth-
limiting element followed directly by the multiplier, or by an intervening amplifier or 
superheterodyne (frequency-translation) stage.  In many cases, particularly in communication 
systems, either the signal or its square or its cross-correlation with a reference signal are further 
processed before being presented as output.  These complexities are discussed in later chapters. 

2.3.4  Multiport networks

 Before considering these signal processing complexities, it is useful to review the physical 
constraints imposed on systems operating on multiple signal streams.  Physical linear passive 
multiport networks conserve power and usually exhibit reciprocity ij jiZ Z  between ports.  

Examples of optical multiport networks include beamsplitters, prisms, diffraction gratings, and 
nonlinear mixers (frequency translators).  Common radiofrequency examples include directional
couplers, magic tee’s, and mixers.  Examples of multiport networks are illustrated in Figure 2.3-
9.  Orthogonality between ports is ofter useful.  For example, the magic tee illustrated in the 
figure incorporates special metallic protuberances at the junction that provide orthogonality 
between ports 3 and 4 over much of an octave; ports 1 and 2 are orthogonal at all frequencies 
because of their physical orthogonality. 

 Although many linear passive N-port devices are readily characterized by their scattering 

matrix S , insight is sometimes required to identify the ports correctly.  For example, a lossy 
mixer might be characterized as a lossless passive network with one port representing all lossy 
elements, which are then placed external to the network model.  Mixer models typically have 
such an external resistive component as well as ports at each frequency of interest, which may 
include all harmonics present, one harmonic per port.  Note that the mixer in Figure 2.3-9 omits 
the L.O. port altogether since no signal of interest enters or leaves by it; L.O. noise is included in 
the noise port.  Waveguide junctions may have one port for each waveguide, but may also have 
one port for each propagating mode in each waveguide.  The nonpropagating modes are each 
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reactive, and these reactances can generally be lumped together inside a lossless passive N-port 
network representation.  The basic form of an N-port network is illustrated in Figure 2.3-8. 

Figure 2.3-8 Linear passive N-port network. 

 We define the exchangeable power at any port, which can never correspond to more than 

one mode, as 2
ia  traveling toward port i from the external network, and 2

ib  emerging from port 

i, where the units typically are watts or watts/Hertz.  Both ia  and ib  are complex quantities, 
where the phase reference can be defined in various ways.  One common definition is: 

   i o o o i o oa V Y 2 V Z I 8Z ,  b V Z I 8Z  (2.3.21) 

where the phase references for V and I depend only on the location of reference planes 
associated with each port, and o oZ 1 Y  is the characteristic impedance of the ith transmission 

line.  Other linear combinations of voltage and current can lead to alternate but equally 
acceptable definitions for ai and bi.

i i = 1, 2, …, N 

N

ai

bi
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Figure 2.3-9 Examples of multiport networks. 
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 The scattering matrix S  relates incoming and outgoing waves ai and bi:

   b Sa    (2.3.22)

It is important to note that the scattering matrix S  is defined only when the N-port network is 

embedded in a larger network that connects to all ports, thus S  is explicitly dependent on that 

network.  The net power entering port i is therefore 2 2
i ia b

 Between any two ports in an N-port network we may define various types of gain, just as we 
have for two-port networks.  For example we may define the “transducer gain” between 
terminals k and j as: 

   
22 2

k j kjkj Dk AjG   b a S P P  (2.3.23) 

where PDk/PAj is the ratio of power delivered to the network from the kth terminal to the power 
available from the jth terminal of the network. 

 In general, however, the only gain of interest is the exchangeable gain, which is equivalent 
to available gain if there are no negative resistances, as defined in (2.3.8) for 2-port networks, 
and here for N-port networks: 

   k

kj
j

E
E

E

P
G

P
  (2.3.24) 

 The externally arriving exchangeable power PEj is 2
ja  by definition.  Evaluation of the 

power available from the N-port network is more difficult because 2
kb  is the actual power 

exiting the N-port network, which has been reduced by any impedance mismatch between the N-
port network and the external circuit at port k.  To find the exchangeable power at the output we 
must therefore multiply by a number typically greater than unity which reflects the loss due to 
any potential mismatch at port k.  This coupling coefficient at port k can be evaluated simply, 
however, by expressing it in terms of both ak and bk.  This coupling coefficient is: 

   
2 2

2k k
kk2

k

a b
1 S

a
  (2.3.25) 

therefore:
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k

2 2
E k kkP b 1 S   (2.3.26) 

Combining (2.3.24) and (2.3.26) yields the desired expression for exchangeable gain between 
ports k and j: 

   
kj

2
kj

E 2
kk

S
G

1 S
  (2.3.27) 

 We can readily impose the constraint of losslessness and passivity on an N-port network by 
requiring:

   
N N

2 2
i i

i 1 i 1

a b   (2.3.28) 

Reciprocity can be imposed by requiring: 

   
t

S S    (2.3.29) 

The mathematical simplicity of the scattering matrix permits efficient derivations of the basic 
constraints imposed upon N-port networks by the properties of passivity, losslessness, and 
reciprocity.

 For example, we can readily determine whether an ideal power combiner exists.  Such a 
three-port device would be perfectly matched at its two input ports, which would be decoupled 
one from another, and would transfer the sum of both the input power streams to a single power 
stream emerging from the output at port 3.  These desired properties can be expressed using the 
scattering matrix as: 

   

0     0     

S 0     0     

         

  (2.3.30) 

where we have assumed symmetry so that  accounts for four entries rather than two.  That is, 
the scattering element connecting ports 1 and 3 is the same as that connecting ports 2 and 3, by 

symmetry.  The upper two diagonal elements of S  are zero because they are matched, and the 
remaining zeros reflect the fact that ports 1 and 2 are not coupled.  Reciprocity is imposed in 

(2.3.30) by the symmetry in S  which exists about the diagonal. 
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 The remaining scattering elements can be further constrained requiring losslessness, using: 

   
t t

a   a  b   b   (2.3.31) 

which follows from (2.3.28).  The right-hand side of (2.3.31) can be expressed in terms of a
using (2.3.22), yielding: 

   
t tt t

b b Sa S a a S Sa  (2.3.32) 

To satisfy both (2.3.31) and (2.3.32) simultaneously, it follows that: 

   
t

1    0     0

S S I 0    1    0

0    0    1

  (2.3.33) 

 Whether the assumed and quite general form of the scattering matrix expressed in Equation 
2.3.30 satisfies (2.3.33) can be readily tested: 

   

2 2

t 2 2

22

            TBD

S S             TBD

TBD    TBD     2

 (2.3.34) 

where the entries labeled by symbol TBD (to be determined) are irrelevant because it is 

impossible for 2  to be unity as required for the upper two diagonal elements by (2.3.33), while 

also satisfying the requirement that the third diagonal element equal unity too.  The simple 
conclusion is that ideal matched symmetric two-input passive power combiners are impossible to 
build.  This example can be repeated with a similar result without the requirement for mechanical 
symmetry, in which case (2.3.30) would introduce , , and  as three unknown scattering 
elements.  

 A more complex example involves the question of whether a lossless passive three-port 
reciprocal network can be matched at all ports simultaneously.  The requirement for three 
matched ports is expressed by requiring zeros on the diagonal of the scattering matrix: 
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0            

S       0      

             0

  (2.3.35) 

Reciprocity is imposed by the diagonal symmetry of the matrix, and passive losslessness is 
imposed by substituting (2.3.35) into (2.3.33): 

   

2 2

t 2 2

2 2

                    

?
S S                       I

                           

 (2.3.36) 

The fact that all off-diagonal elements must be zero implies that at least two of the three 
elements , , and  must be zero, and therefore at least one of the diagonal elements must also 
be zero, violating (2.3.33) and demonstrating that it is not possible to match all three ports of a 
linear passive reciprocal network simultaneously.  If we violate reciprocity, which can be done 
by incorporating magnetized ferrites in such a device, then we can show that all three ports can 
be matched simultaneously, as is commonly done with three-port circulators characterized by 
scattering matrices such as: 

   

0      1      0

S 0      0      1

1      0      0

  (2.3.37) 

Such a three-port circulator passes all the power from port 1 into port 2, all the power from port 2 
into port 3, and all the power from port 3 into port 1; switchable circulators permit the magnetic 
field direction to be reversed together with the direction of power flow.  It is easily shown that 
(2.3.37) satisfies (2.3.33). 

 A still more complicated example of practical importance is the lossless passive reciprocal 
symmetric four-port device for which ports 1 and 2 are isolated, as are ports 3 and 4.  Examples 
of this are microwave devices called directional couplers which can be fabricated by bonding 
two waveguides together with one or more holes connecting them so as to provide the desired 
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isolation at the frequencies of interest, (see Figure 2.3-8).  Another example is the optical beam 
splitter where an input beam is reflected to one side and also passes straight through, defining 
three ports, while the return beam is partially deflected to the other side, defining the fourth port.  
The scattering matrix for this case (see Figure 2.3-8) can be represented as: 

   

0      0            

0      0            

S

            0      0

            0      0

  (2.3.38) 

That all four ports are matched is imposed by the zeros on the diagonals of (2.3.38), and that the 
pairs of ports 1,2 and 3, 4 are each isolated is imposed by the other zeros in (2.3.38).  Reciprocity 
is imposed by the diagonal symmetry of the matrix, and mechanical symmetry about the axis 
separating ports 1 and 3 from ports 2 and 4 is imposed by doubling the appearances of  and  in 

the scattering matrix.  Imposing power conservation (2.3.33) on (2.3.38) results in 
22 1

and 0 .  Although 
22 is not necessary to satisfy these two results, it is 

necessary for j 2re , where the constant r is any real number between zero and one.  In 

this case our constraints resulted in a very specific relative phase shift (  radians) between paths 
 and  for this four-port network. 

2.3.5  Mixers and their noise figures

 We may now use this N-port representation to characterize mixers further.  When 
representing real systems by N-port networks, the first step is to define carefully each of the 
ports of interest.  These issues are well represented by the square-law detector circuit shown in 
Figure 2.3-10. 

Figure 2.3-10 Square-law detector circuit. 

i(t) RL

Rs

s(t) + (t) = VTh 

+

-

+  vd  -
vo(t)
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The Thevenin voltage source VTh is a superposition of the signal and local oscillator voltages, 
s t t , and it drives current i(t) through the diode and the source and load resistors Rs and 

RL; the output voltage vo(t) appears across the load resistor.  The local oscillator signal t  is 

proportional to sin ot  where o o2 f .  The voltage across the diode vd is related nonlinearly 

to the current i(t) by the diode characteristic, illustrated in Figure 2.3-11. 

Figure 2.3-11 Diode characteristic, load line, and operating point vd(t). 

 Two constraints are imposed upon the relationship between the diode voltage and current; 

one constraint is imposed by the diode characteristic 2
di v , the other is imposed by the rest of 

the circuit, which is two resistors in series with the Thevenin voltage source, and is represented 
by the load line equation: 

   Th d L Si(t)= V v R R   (2.3.39) 

 Deviations from an ideal square-law relationship between VTh and i arises partly because 

di v is more nearly exponential and the intersection between the load line and the diode 

characteristic moves in a somewhat nonideal manner.  Nonetheless the output voltage can be 
often approximated to high accuracy by a simple low-order polynomial dominated by the square-
law term: 

   2 2 3
o L d L o 1 d 2 d 3 dv t iR v R k k v k v k v  (2.3.40) 

The voltage vd(t) driving the detector is dominated by local oscillator frequency o and the 
signal s:

   d o s sv t v  sin t v  sin t small higher-order terms (2.3.41) 
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 The spectral content of the detector output Vo(f) can be quite rich because it contains most 
harmonics of both local oscillator and signal, and all possible sums and differences thereof, as 
suggested in Figure 2.3-12. 

Figure 2.3-12 Spectral content of mixer output. 

For a nearly ideal square-law detector the only components with significant power are the local 
oscillator and signal components at fo and fs, and the much lower intermediate frequency fif.  It is 
important that the diode characteristics and associated circuitry suppress higher frequencies 
because their formation of sums and differences can contribute frequencies that also fall inside 
the passband of the intermediate frequency amplifier, contributing potentially serious coherent 
interference. 

 Figure 2.3-12 also shows the image frequency, which is positioned symmetrically about the 
local oscillator frequency fo, opposite signal frequency fs.  Unless a filter preceding the mixer 
eliminates power entering the mixer at the image frequency, the image will mix with the local 
oscillator to produce contributions at fif.

 The mixer four-port network model, illustrated in Figure 2.3-13, can characterize the 
behavior of most mixers.   

Figure 2.3-13 Four-port network model for a mixer. 

 The single-sideband receiver noise temperature TR designated TSSB, equals (FSSB-1)To,
where, in terms of scattering matrix elements: 
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 (2.3.42) 

Therefore,

   
22

4342
SSB 2 3 o c r2 2

41 41

SS
T  T T   T L t 1

S S
 (2.3.43) 

Note that in (2.3.42) the input noise N1 is kTo, the output signal S4 equals the input signal S1

times the gain connecting ports 1 and 4, and the output noise N4 has contributions from port 1, 
which by definition is terminated with To = 290K, plus contributions from the image port (T2)
and the internal resistive port (T3).

 When measuring power spectral density over broad bandwidths it is not uncommon to 
regard both the signal and image passbands as inputs, which slightly alters the expressions for 
noise figure and noise temperature.  Although it is often suggested that the single-sideband noise 
figure FSSBis twice the double-sideband noise figure FDSB, that is true only under certain 

circumstances.  To evaluate FDSB we again use (2.3.42), noting that the signal at the output S4 is: 

   2 2 2
4 o 41 42 44S kT S S 1 S  (2.3.44) 

from which it follows that: 

   2 2 2
DSB 3 43 41 42T T S S S  (2.3.45) 

If we assume symmetry between signal and image ports, then 2 2
41 42S S  and To = T1 = T2,

and:

   
2

433
DSB 2o 41

ST1F 1
2 T S

  (2.3.46) 
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2

433
SSB DSB2o 41

ST
F 2 2F

T S
  (2.3.47) 

It is easy to see how these expressions could be extended to account for other signal and noise 
components. 

 In general, scattering matrixes for multi-port networks can be determined experimentally by 
introducing test signals and observing their responses at the other ports or frequencies of interest 
while the device is embedded in the larger network. 

2.3.6  Noise cancellation in mixers

 A variety of noise cancellation methods exist for reducing noise in the receiver types we 
have considered thus far.  Five examples follow.  The first two deal with filtering in single-
conversion and multiple-conversion superheterodyne systems.  The next two examples deal with 
cancellation of unwanted signals by dividing the signal into two components and then 
recombining them so that the signal terms add and the noise terms cancel by virtue of the fact 
that the noise and signal enter the system differently.  The fifth example illustrates how 
calibration techniques can similarly cancel unwanted effects. 

 Figure 2.3-14 illustrates how local oscillator noise and unwanted signals from the image 
sideband can be canceled by filtering. 

Figure 2.3-14 Signal power spectra for a single-conversion superheterodyne system. 

The spectra illustrated in this figure correspond to the case where the signal at fs resides in the 
upper sideband (USB).  The filter preceding the mixer (bandwidth ) is then designed to 
eliminate signal and noise in the lower sideband (LSB) so that they do not get translated into the 
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low-frequency i.f. passband centered at fi.f..  The figure also illustrates how any noise sidebands 
introduced by the local oscillator may mix with the local oscillator so as to translate into the i.f. 
passband, contributing unwanted noise.  Most of this noise is eliminated for the case illustrated 
in the figure by the sharp i.f. passband filter.  The illustration suggests how the high-frequency 
tails of the local oscillator noise may extend sufficiently far to fall inside the passband in any 
event.  Placing a sharp filter on the output of the local oscillator before it enters the mixer is the 
only easy remedy here.  For example, if Q = 100, then the local oscillator should be separated 
from the signal sideband by at least 2fo/Q.  Filters implemented with RLC circuits or 
transmission line equivalents exhibit resonator Q’s which typically range from ~50 for RLC 
circuits to values of ~1000 or more for microwave resonators or even 104-106 for 
superconducting, surface acoustic wave, or crystal resonators.  Coupling such resonators with 
active elements and feedback loops can raise Q’s even higher. 

Figure 2.3-15 Dual down-conversion circuit. 

 Sometimes this frequency separation and its associated intermediate frequency are too great, 
and thus two down-converters may be cascaded, as suggested in Figure 2.3-15.  In general, 
multiple conversion or at least dual down-conversion is required when the desired ratio fs/fi.f. is 
greater than approximately 1/3 the maximum available Q of the filters.  The frequency spectra 
corresponding to various points in the circuit of Figure 2.3-15 are illustrated in Figure 2.3-16. 
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Figure 2.3-16 Power spectra for signals and mixer A, mixer B, and output of a dual down-
conversion system. 

 Consider a 1-GHz wireless phone where each phonecall occupies a fixed 10-kHz bandwidth 
and these channels have an additional 10-kHz guardband between them; thus the channels are 
spaced 20 kHz apart.  In this case amplifier A of Figure 2.3-15 might have a bandwidth fA
adequate to capture hundreds of such adjacent channels, and the first local oscillator f1 might be 
separated from the band center fs by three percent of 1 GHz, or 30 MHz.  The bandwidth of the 
filter which defines the passband of amplifier A can therefore be approximately 30 MHz, which 
can be realized with a filter Q = 30. In practice, multi-pole filters are often used with Q 50, if 
such circuit elements are affordable.  A filter with comparable Q might be used to reduce any 
noise sidebands originating from the local oscillator.  Both of these filter requirements enforce a 
minimum separation between the local oscillator and signal frequency that may be too great 
relative to the narrow bandwidths required for the filters at the intermediate frequencies because 
fi.f. is too high.  In this case the need for narrower output bandwidths can be accommodated by a 
second mixer with its local oscillator at frequency f1, as suggested in Figure 2.3-16.  In this 
example f2 lies above the i.f. passband at fs - f1.  The filter centered in the passband of amplifier 
B at fs - f1 serves to reject both the noise sidebands of the local oscillator at f2 and the image 
band which might otherwise be translated into the passband of the amplifier C; the second 

i.f . 2 s 1f f f f , as suggested in Figure 2.3-16.  In this example amplifier A might be centered 

near 1 GHz, amplifier B might be centered near 10 MHz, and the final amplifier C might be 
centered near 100 kHz. Then a multipole filter with Q  100 could produce a reasonable boxcar 
filter of 10-kHz width, sufficient to block signals from adjacent channels from entering any 
particular channel passband, and to allow the rolloff of these channel-definition filters to lie 
within the nominal 10-kHz guardbands separating adjacent channels.  Note that crystal filters 
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have 5Q 10 , so a single-conversion superheterodyne incorporating them could provide these 
same 10-kHz channels, if desired.   

Figure 2.3-17 Superheterodyne sideband cancellation circuit. 

 The next example illustrates how signal processing rather than filtering can be used to 
cancel the image sideband while preserving intact the signal sideband.  Filters are more difficult 
to implement when the signals to be separated are narrow compared to their absolute 
frequencies; fortunately this is the circumstance for which the signal processing technique 
illustrated in Figure 2.3-17 works best.  In this system the signal s(t) enters a matched 3-port 
network which divides the power equally, conveying it to two separate mixers driven by the 
same local oscillator, but with a 90-degree lag in one arm for which the output experiences a 
second 90-degree lag before being amplified in a lowpass filter (LPF) similar to the one at the 
output of the other mixer.  The upper sideband is selected by adding these two filtered outputs, 
while the lower sideband is selected by subtracting them. 

 To show that this system works, it is useful to recall two identities: 

   
o oj t j t

o
e ecos t
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  (2.3.48) 

   
o oj t j t

o
e esin t

2 j
  (2.3.49) 

These expressions for the cosine and sine functions lead to the graphic representation for local 
oscillator A driving the lower mixer in Figure 2.3-17, and local oscillator B driving the upper 
mixer.  These spectra are shown in Figure 2.3-18. 
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Figure 2.3-18 Local oscillator spectra in a sideband-cancellation circuit. 

The double-sided spectrum for the signal S(f) shows the relationships between the upper 
sideband U, the lower sideband L, and the local oscillator A.   

 Multiplication of s(t) and local oscillator A to yield signal C of Figure 2.3-17 results in 
convolving their spectra in the frequency domain, as suggested in Figure 2.3-19.  The 
convolution C of S(f) and local oscillator A is shown in the top left part Figure 2.3-19 where we 
see the upper and lower sidebands have been superimposed in the same frequency band; our task 
is to separate them.  The spectrum for signal D is the convolution S(f) with the transform of sin 

ot, also as illustrated in Figure 2.3-19; in this case the i.f. frequencies convey the difference 
between the upper and lower sidebands, shifted 90 degrees (  j).  The signal E emerging from 
the 90-degree lag inserted after the mixer has the spectrum shown at the bottom left of Figure 
2.3-19, where the i.f. frequencies again represent the difference between the upper and lower 
sidebands, but without any phase shift relative to the output signal C from the other mixer.  It is 
now easy to see how summing signals C and E yield the spectrum shown on the top right of 
Figure 2.3-19, which is the upper sideband alone.  The lower sideband is the difference between 
the signals C and E.  The bandwidth over which this sideband-separation circuit works well is 
limited by the bandwidth of the 90-degree phase shifters.  In general the bandwidths of such 
systems are less than a few percent for sideband cancellation factors greater than ~20 dB. 
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Figure 2.3-19 Intermediate-frequency spectral distribution in a 
sideband cancellation circuit. 

 Cancellation is used in mixers not only for selecting sidebands, but also for cancelling noise 
sidebands of the local oscillator which otherwise might mix with the local oscillator to produce 
beat frequencies within the i.f. passband.  The circuit and waveforms in Figure 2.3-20 illustrate 
the relationship between diode orientation and i.f. signal phase.

Figure 2.3-20 Mixer circuit and waveforms. 
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The output voltage vo is directly proportional to the diode current i flowing through the load 
resistor RL.  The diode characteristic i(vd) is plotted with the current i along the vertical axis and 
the diode voltage vd along the horizontal axis.  The vertical axis is also used to represent time, so 
that the local oscillator signal can be represented as a sine wave which slowly drifts in-phase and 
out-of-phase with the signal at the i.f. beat frequency fi..f..  The resulting current i(t), as illustrated 
in the figure with time now on the horizontal axis, is an r.f. sine wave modulated at the 
intermediate frequency much more strongly for positive voltages than for negative voltages.  
When this output intermediate frequency voltage is low-pass filtered, the emerging signal closely 
resembles the positive envelope of the combined local oscillator and signal sinusoids, but with 
half the peak amplitude. 

 The signal and local oscillator waveform can be combined in a variety of devices, one of 
which is the magic-tee, illustrated in Figure 2.3-21. 

Figure 2.3-21 Mixer configuration using a magic-Tee. 

A magic-tee is fabricated by welding four waveguides together as illustrated, incorporating small 
reactive elements at the junction that, at the design frequency, isolate the two lateral ports from 
each other and permit all four ports to be matched simultaneously when embedded a matched 
network.  The signal and local oscillator ports are orthogonal by virtue of geometry, and the 
other two ports are isolated from each other by virtue of junction reactances even though there is 
generally a clear physical path connecting them. 

 In Figure 2.3-21a the local oscillator signal enters from the front and splits equally between 
the two side arms in phase, which can be seen from the illustrated electric field configuration of 
the dominant mode of the waveguide.  The signal enters from the top producing out-of-phase 
electric fields in each of the two side arms due to the antisymmetry of the junction.  If the two 
diodes have wires extended across the waveguide so they can pick up the propagating electric 
fields, then the intermediate frequency signal detected by the two diodes will be out-of-phase due 
to the sign reversal associated with the signal relative to the in-phase local oscillator signal in the 
two diode wires.  This can also be seen by considering the voltage waveforms in Figure 2.3-20.  
These out-of-phase intermediate frequency signals readily pass through the output transformer to 
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be amplified subsequently.  Any local oscillator noise, however, effects both diodes identically, 
and therefore any noise contribution at the intermediate frequency cancels in the same 
transformer.  Such cancellation is typically 20-30 dB, where higher values of isolation are 
difficult to obtain without very precise matching of the diode and circuit characteristics. 

 A variation of this configuration is suggested in Figure 2.3-21b where reversed diodes are 
used, and the intermediate frequencies are added.  In this case the local oscillator noise has 
opposite polarities in the two diode outputs, and such summation cancels it, while permitting the 
signals to add.

 An alternate four-port network used for mixers is illustrated in Figure 2.3-22.   

Figure 2.3-22 Mixer employing 3-dB sidewall coupler. 

It can be shown (see Section 2.3.4) that a passive, lossless, symmetric, reciprocal 4-port network 
must exhibit a 90-degree phase difference between signals exiting the two output ports; since this 
applies to signals that enter through either the signal or the local-oscillator port, the signal and 
local oscillator each experience a cumulative 180-degree phase reversal relative to one another at 
the two diodes, yielding performance similar to that of the magic-tee. 

 Efficiency of mixers can be better understood and improved by also considering their time-
domain performance.  Consider the idealized diode illustrated in Figure 2.3-23. 

Figure 2.3-23 Time-domain currents and single- and double-balanced mixers. 

Over short time periods the superposition of the signal and local oscillator signals resembles a 
sinewave, as illustrated, which is picked up and rectified by the diode as it feeds the i.f. 
amplifier.  During those half-wave intervals when the diode is open-circuited, the 
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electromagnetic wave can pass largely unimpeded down the waveguide to be reflected by the 
short circuit approximately one-quarter wavelength away.  This time delay and the phase reversal 
at the wall result in the return wave doubling the current through the diode without changing its 
strongly pulsed character (half-wave rectification).  In contrast, the illustrated double-balanced 
mixer draws current through the upper diode for one half of the r.f. cycle, while the other diode 
draws current during the other half.  Since less reliance is placed on the quarter-wave delay, the 
intrinsic bandwidth may be broader. 

2.3.7  Calibration techniques

 Cancellation techniques often contribute importantly to accurate calibration of receiving 
systems.  These issues are well illustrated by a case study involving early measurements of the 
2.7 K isotropic cosmic background radiation as measured from a mountaintop.  The challenge is 
not only to calibrate the relationships between antenna temperature and voltage, as suggested in 
Figure 2.3-24, but also to measure the atmospheric contribution. 

Figure 2.3-24 Calibration curve for non-ideal receiver. 

The relationship between antenna temperature and receiver output voltage generally departs 
slightly from the desired ideal linear relationship, which is usually characterized by a baseline 
offset and a gain.  These can be calibrated as suggested in Figure 2.3-25. 

 The receiver in Figure 2.3-25 consists of a mixer driven by a local oscillator for which the 
frequency is measured by a tunable resonant absorbing frequency meter located in front of a 
crystal detector.  The signal enters the mixer from a ferrite circulator used as an isolator.  This 3-
port device transports power entering from one port to the next clockwise output port, for all 
three ports.  Thus any local oscillator leakage passes first to a matched load and thus is 
attenuated 20-30 dB before entering the Dicke switch, which in this diagram is a 4-port 
switchable circulator.  The switchable circulator can move energy to adjacent ports either 
clockwise or counterclockwise, depending on the direction of the magnetizing current.  Thus for 
this circuit the receiver looks alternately at an antenna pointed at cold space, or a switch that 
views either the main antenna or the liquid helium calibration load through identical horn 
antennas.  Terminating the fourth port of this circulator in a cold sky view reduces the amplitude 
of any thermal noise it might indirectly introduce to the Dicke switch or that might be reflected 
from an imperfect calibration switch. 
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Figure 2.3-25 Radio receiver calibration circuit. 

 The baseline offset can be calibrated by switching between the main antenna and a 
calibrated blackbody load, in this case a liquid helium-bathed set of absorbing pyramids inside 
an evacuated dewar floating in liquid nitrogen.  Reflections from the surface of the liquid helium 
are reduced by tilting the dewar so that the received polarization crosses the interface near 
Brewster’s angle.  The dewar is further capped by a metallic reflector that returns any reflections 
to the cooled load. 

 The gain is calibrated by a noise generator that can be turned on or off while switched into 
the receiver input.  The noise generator can be calibrated in turn by comparing its incremental 
contributions to the receiver output with contributions from the main antenna as it alternately 
views the cold sky (near 6K) and a calibrated blackbody near ambient temperature (measured by 
a thermometer). 

 The symmetry of the Dicke switch in Figure 2.3-25 can be tested by connecting all three 
input ports to identical sky antennas observing termperatures far below ambient and noting any 
differences.  The symmetry of the main helium/sky switch can be tested by reflecting the 
duplicate antennas 90  skyward by a special antenna calibration reflector assembly.  The 
symmetry of this assembly can be tested by flipping it relative to the horizontally pointing main 
antennas.

 A particularly important test ensures no strong signals radiated by the local oscillator or 
mixer will reflect back into the receiver differently depending on the position of the main 
calibration switch.  A tunable short circuit replaces the main calibration switch while being 
viewed by the Dicke switch.  If this tunable short, as it moves through a full half wavelength, 
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induces no change in the radiometer output, then any stray escaping local oscillator signal could 
not produce a systematic calibration error if the calibration switch and load VSWR is a function 
of switch position.  Such calibration-switch dependent L.O. reflections commonly interfere 
coherently with the original L.O. signal to modulate the detected power as a function of 
calibration switch position, introducing troublesome calibration errors that must be remedied. 

 A certain amount of energy is also emitted by the partially cooled metallic sidewalls of the 
matched load submerged in helium.  These losses can be measured by removing the calibration 
load from the liquid helium and letting the system view the sky through the same pipe, but with 
the loads at the bottom removed.  By observing the loss as the length of this pipe is doubled, 
some sense of wall emission can be obtained; values less than ~0.2K are anticipated from room 
temperature walls if the original antenna beamwidth viewing the helium is <~20o.

 Most difficult to calibrate is the contribution of atmospheric emission, which is due 
principally to water vapor below ~40 GHz.  Figure 2.3-26 illustrates how a receiver on a 
mountain top might view zenith and then perhaps 60 degrees from zenith where the optical 
pathlength through the atmosphere, and therefore the atmospheric radiance, is approximately 
doubled for nearly transparent atmospheres.  At frequencies near 8-mm wavelength the 
mountaintop atmospheric absorption coefficient is perhaps one percent, corresponding to zenith 
emission of ~3K.  If this doubles at 60o zenith angle, then the zenith emission can be estimated 
and subtracted from the observed value to yield the background sky brightness temperature, near 
2.7K.

Figure 2.3-26 Atmospheric emission measurement 
deduced from an elevation scan of radiance. 
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2.4  OPTICAL AND INFRARED DETECTION 

2.4.1  Photoelectric detectors

 The preceding discussion in Section 2.3 applies in the Rayleigh-Jeans (radio) limit where 
the photon energy hf is much less than the thermal energy kT.  Next we consider the opposite 
optical limit where the photon energy hf is much greater than kT, and the infrared case where 
they are comparable.  The discussion below begins with a review of common types of photon 
detectors.

 Photodetectors sense the movement of electrons ionized by photons impacting metals in 
vacuum or semiconductors.  Prior to the advent of semiconductors, sensitive photodetectors 
utilized the photoelectric effect wherein an arriving photon elevates an electron sufficiently far 
above the metallic Fermi level that it can climb over or tunnel through the potential barrier which 
exists within ~2nm of the surface of the photo-emitter.  The height of this barrier is called the 
work function of the metal and is approximately 4-5 volts for most common metals, and drops to 
1.95, 2.1, and 2.3 volts for cesium, rubidium, and lithium, respectively.  These potentials are 
sensitive to surface contamination and microstructure, typically dropping when the surface has 
sharp points which can concentrate electric fields, and increasing if there are additional insulting 
barriers.  This work function approximates the energy associated with a charge being attracted by 
its mirror image as it approaches the surface, where the closest approach approximates the 
diameter of the outermost electron orbitals.   

Figure 2.4-1 Photoelectric potentials near a metallic surface and vacuum. 

 In order for photoemission to occur the photon energy hf should be approximately greater 
than the metallic work function m e.  If this potential is one volt, then hf equals e joules or one 
electron volt (1 e.v.).  The cutoff wavelength for such a detector is: 
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   c.o. c.o.
m

hcc f 0.6 0.7 m for cesium
e

 (2.4.1) 

 Such a photo emittor can be excited from the front or, if it is sufficiently thin, from the back, 
as suggested in Figure 2.4-2. 

Figure 2.4-2 Phototube detector circuit. 

In this circuit a typical photon may release an electron with a probability equal to the quantum 
efficiency , which is typically less than 30 percent for germanium or silicon cathodes.  The 
released electron then accelerates linearly toward the anode where it is intercepted.  The current 
pulse in the anode circuit associated with this moving electron increases linearly with time as the 
image charge on the anode increases, and ends when the electron impacts the positively charged 
anode, neutralizing that image charge.  This current i can be characterized by the electron charge 
e times the electron velocity u divided by the cathode-anode gap L.  That is, the anode current 
i(t) is approximately: 

   2 2
ei(t) eu L eat L e Vt m L  (2.4.2) 

where the acceleration of the electron a equals the force on the electron eV/L divided by the 
electron mass me.  If photon arrival times are rare compared to the transit time of the electrons, 
then the anode current is a Poisson-distributed series of triangle waves for which the integrated 
current is one electron charge.  A practical problem with such detectors is that these weak 
currents and the voltages vo(t) = RLi(t) are typically small compared to the Johnson noise 
produced by the load resistor RL.

 Photomultiplier tubes (PMT’s) were developed to overcome this Johnson noise.  They have 
the form illustrated in Figure 2.4-3.  The electrons emitted by the photons impacting such a PMT 
are accelerated to perhaps 100 volts, sufficient for the impacting electron to eject several 
secondary electrons from the first anode, called a dynode, which is positioned so that an 
additional ~100-volts potential exists between it and a second dynode, where again each of the 
secondary electrons can now produce several secondaries of its own.  A typical PMT might have 
7-13 dynodes collectively producing an electron gain of ~104-107.  Now the current pulse and 
the associated voltage spike is normally much larger than the Johnson noise from RL so that 
individual incoming photons can be detected with high reliability, provided they produce the 
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initial photoelectron.  Such phototubes typically detect 1000 or more events per second 
originating from comic rays, thermal emission, and environmental radioactivity. 

Figure 2.4-3 Photomultiplier tube circuit. 

 Those electrons originally emitted from other than the first dynode typically produce current 
pulses which are several times smaller than those produced normally, so that electronic circuitry 
can reject them.  Typical photomultiplier tubes can produce counting rates of ~10MHz-1GHz or 
more before the pulses begin to overlap.

2.4.2  Semiconductor photodiodes

 Similar photon emission processes occur inside semiconductor diodes near the junctions 
between p-type and n-type semiconductors.  Consider the semiconductor energy diagram shown 
in Figure 2.4-4.  The figure also illustrates the density of electron states in the conduction and 
valence bands, both of which increase towards the gap as illustrated by the boldface 
crosshatching.  The vertical axis represents electron energy and the horizontal axis represents 
position in a direction parallel to the pn junction.  The valence band of energy is associated with 
electrons occupying bound positions whereas any higher energy electrons located in the 
conduction band are free to move; the conduction band is empty at zero temperature. 
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Figure 2.4-4 Electron energy diagram for doped semiconductors. 

 Although electrons can move between the valence and conduction bands, they occupy 
positions in the energy gap between the two bands only when bound to an impurity donor atom
at energy level ED or an acceptor at energy EA.  Lattice defects can also trap electrons.  Electrons 
bounds to donors at energy ED can readily be ionized at low temperatures or by photons or 
phonons with (low) energies greater than kTD (see Figure 2.4-4).  When ionized to the 
conduction band these electrons become the dominant carriers.  Such a semiconductor doped 
with donors is called an n-type semiconductor because negative carriers dominate conduction.  
Alternatively, a semiconductor may be doped predominately with acceptors having energy levels 
EA located sufficiently close to the valence band that thermal or photon energy can readily excite 
electrons from the valence band across the small energy gap where they become bound to the 
acceptor atoms which sparsely populate the semiconductor.  As these electrons leave the valence 
band they also leave a vacancy behind called a “hole” which can readily be filled by adjacent 
electrons, causing the hole to move.  We regard such conduction in the valence band as being 
dominated by positive carriers called “holes”, even though such a hole moves as a vacancy filled 
by physically translating electrons one atom at a time. 

 Such semiconductors have a nominal electron energy associated with the top of the electron 
population.  At high temperatures this Fermi level (analogous to sea level) lies in the middle of 
the band gap.  At room temperatures the Fermi level lies close to EA for p-type semiconductors 
and close to ED for n-type semiconductors.  Thus when an open-circuited p-n junction is formed 
between p-type and n-type semiconductors, the Fermi level of all three must align as suggested 
in Figure 2.4-5. 
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Figure 2.4-5 Electron energy diagram for a pn junction 

Note how the Fermi level remains at constant energy across the junction whereas the energies 
associated with the bottom of the conduction band and top of the valence band are at non-
constant energies.  In the case of silicon the gap energy Egap is approximately 1.2 volts.  When 
the voltages are as shown, the Boltzmann distribution of electrons above the Fermi level in the n-
type semiconductor has an energy tail sufficient to inject electrons into the p-type region; this tail 
is essentially identical to the Boltzmann tail associated with electrons which might be excited 
from the Fermi level in the p-type semiconductor.  That is, there is equilibrium between electrons 
excited on each side of the junction and propagating toward the other side; these two currents 
balance and are in equilibrium if the junction is open circuited. 

 If we bias the pn junction positively or negatively, current will flow.  Figure 2.4-6 suggests 
how the current in a forward-biased diode can increase exponentially with the bias voltage.  The 
Boltzmann distribution of thermally excited electron energies in the n-type side of the junction 
has an exponentially increasing number of electrons with energies above the bottom edge of the 
conduction band of the p-type semiconductor, and they therefore can move freely to the left of 
the diagram, corresponding to a diode current flowing from the p-type to n-type side of the 
junction.  When the diode is forward biased the i-v characteristic illustrated in Figure 2.4-6 
results.  The thermally excited electrons in the n-type semiconductor are trapped and cannot 
cross the junction.  Only the few thermally excited electrons rising above the low-lying Fermi 
level in the p-type semiconductor are able to flow; these may be supplemented by current 
associated with holes left behind by excited electrons in the n-type semiconductor.  This reverse 
current flow is largely independent of reverse bias and approximates Io, as suggested by the i-v 
characteristic of Figure 2.4-6. 
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Figure 2.4-6 Energy diagram for a forward-biased diode. 

 The behavior when the diode is negatively biased is suggested in Figures 2.4-6 and 2.4-7.  
The thermally excited electrons in the n-type semiconductor are trapped and cannot cross the 
junction.  Only the few thermally excited electrons rising above the low-lying Fermi level in the 
p-type semiconductor are able to flow; these may be supplemented by current associated with 
holes left behind by excited electrons in the n-type semiconductor.  This reverse current flow is 
largely independent of reverse bias and approximates Io, as suggested by the i-v characteristic of 
Figure 2.4-6. 
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Figure 2.4-7 Electron energy diagram for a reverse-biased diode. 

 Such p-n junctions can function as photodetectors when photons excite electrons into the 
conduction band so they can exit from the negative terminal of the reverse-biased diode.  Thus 
the reverse current in the diode increases linearly with photo-excitation, and nonlinearly with 
diode temperature T.  To minimize the number of thermally excited electrons, sensitive 
photodiodes are typically cooled to reduce their dark current to acceptable levels.  If the photon 
energy is sufficiently high, i.e. hf > Egap, then the quantum efficiency can be ~0.8-0.95 
conduction electrons produced per photon. 

 A typical photodiode circuit is shown in Figure 2.4-8. 

Figure 2.4-8 Photodiode circuit. 

The output voltage of this circuit is: 

   s
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P
v i eR

h
  (2.4.3) 

where the photon power Ps = nhf, and where n is the number of photons incident on the diode 
junction per second.
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2.4.3  Avalanche photodiodes

 A more sensitive detector can be obtained by reverse biasing such photodiodes more 
strongly into the “avalanche” region, creating an avalanche photodiode (APD).  A typical i-v 
characteristic for an avalanche photodiode is shown in Figure 2.4-9. When biased in the 
avalanche region an APD exhibits markedly increased current for small increases in reverse-bias 
voltage v. 

Figure 2.4-9 Avalanche photodiode i-v characteristic. 

This is because each excited electron has an energy sufficiently above the conduction band edge 
in the n-type semiconductor that it can be accelerated by the induced electric field so as to knock 
one or more additional electrons out of the lattice so they too join the avalanche, as suggested in 
Figure 2.4-10.  The figure shows how a photon with energy hf photo-excites an electron from the 
Fermi level into the conduction band where it eventually loses energy by collisionally exciting 
another electron across the same gap.  They become a pair which can further collisionally excite 
more electrons until none have energy sufficient for further excititations. 
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Figure 2.4-10 Electron energy diagram for a backed-biased avalanche photodiode 

 The number of electrons produced in an avalanche from a single photoexcitation is limited 
by the exponential growth process associated with the avalanche.  The ith photon has gain 

o ig z
ig e , where go is a constant and zi is approximately the distance into the junction where the 

excitation occurs and is therefore proportional to the electrical potential and energy extractable 
from the collisionally excited electron, as suggested in Figure 2.4-10.  A photoexcited electron 
gains energy as it moves toward the positive terminal and then collides with a bound electron, 
releasing it; this process repeats yielding exponential growth in the current pulse. 

 The average gain G associated with the single photoexcitation is therefore: 

   o i o o

L

g z g z g L

oo

1 1G E e e dz e 1
L g L

 (2.4.4) 

where L is the junction thickness and the maximum value of zi.  Although this equation only 
approximates the avalanche process, it is roughly correct and has some intuitive value.  Later we 
shall find use for the expected value of g2, which is: 

   o i o2g z 2g L2

o

1E g E e e 1
2g

 (2.4.5) 

E[g2] appears later in an expression for current fluctuations in APD’s associated with the 
effective detector noise.  The nonuniformity of the current produced in each photoexcitation 
pulse is suggested in Figure 2.4-11, where the pulse heights tend to be uniformly distributed in a 
logarithmic space. 
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Figure 2.4-11 Poisson-distributed pulses with random amplitudes 

Thus:

   2 2 xE g G G   (2.4.6) 

where x 0.25, and values of 0.2-0.5 are typical.  Typical values for average gain chosen in 
practice are ~23 6dB.

2.4.4  Photodetector carrier-to-noise ratio

 Photodetectors are often usefully characterized by their carrier-to-noise ratio (CNR), where:

   
2 2

sCNR  i t E i i   (2.4.7) 

where is(t) is the signal current and i is the total current flowing through the load resistor RL in 
the circuit of Figure 2.4-12.  CNR is closely related to SNR. 

Figure 2.4-12 Photodetector circuit model. 

The average signal current si t  in (2.4-7) equals one electron charge e per detected photon, 

where the number of detected photons is the quantum efficiency  times the received signal 
power Ps divided by the energy per photon hf.  For avalanche photodiodes the charge generated 
per detected photon is eG; in this case: 
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   s si t P eG hf   (2.4.8) 

The variance of the total current i has contributions from thermal noise contributed by Rd and 
shot noise associated with the signal and dark-current photons.  The variance of the signal and 
dark current associated with shot noise is: 

   2
n S Dshoti 2B eG i   (2.4.9) 

which follows from (2.1.36).  If we assume the load resistor RL is matched to the detector 
impedance Rd but contributes no thermal noise of its own (i.e. is at 0oK), then the thermal noise 
current in divides equally between Rd and RL.  Since the thermal power flow to the load kTB 

equals 2
n Li 2 R , it follows that: 

   
L

2
n Lthermal Ri 4kTB R   (2.4.10) 

 It then follows from (2.4.7-10) that: 

   

22

2
s

s D L

ii nn thermalshot

P eG hf
CNR

2BeG P P eG hf 4kTB R
 (2.4.11) 

which applies to photodiodes or phototubes with unity gain, or photomultiplier tubes with gain G 
> 1.  Manipulating (2.4.11) yields: 

   s
2

D S L s

P hf 2B
CNR

1 P P 2k Thf R P eG
 (2.4.12) 

Equation 2.4.12 yields the best possible CNR if the temperature T and the dark current PD both 
approach zero, or the signal power Ps approaches infinity; this is the quantum limit.  In this 
quantum limit we want large quantum efficiency  and signal power Ps, and small bandwidth B.  
The option of letting RL approach zero to produce an infinite denominator in (2.4.12) is not 
practical because we assumed RL equals RD, and any mismatch would be counterproductive.  In 
practice designers choose T so that PD < Ps and choose G so that RLG2 is sufficiently large that 
the thermal noise term in the denominator of (2.4.12) is small compared to unity.  Sometimes 
economics prevents these limits from being achieved. 
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 The CNR for avalanche photodiodes (APDs) has an additional noise contribution from the 
variable gain of an APD.  That is, the shot noise due to poisson arrival times is enhanced by the 
variable amplitudes of each current impulse, as suggested in Figure 2.4-13. 

Figure 2.4-13 Avalanche photodiode current idealized (rectangular pulses). 

The integral under each impulse equals the charge e of an electron times the instantaneous gain 
of the APD; a pulse duration of  as it appears in the figure corresponds to a current i = gie/ .
The number of n  of such impulses per second equals s DP P hf .  The autocorrelation 

function for this current, and its corresponding power density spectrum are illustrated in Figure 
2.4-14.

Figure 2.4-14 APD current autocorrelation function and power density spectrum. 

The variance i
2 of the current flow from DC to bandwidth B corresponds to the hatched portion 

of Figure 2.4-14, and is: 

   
B
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i i s D

B
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Using (2.4.13) in (2.4.7) we obtain: 

   

22 ni

2
s

2 2
s D L

i thermal

s
2

D
2 2s L s

P eG hf
CNR APD

2B g e P P hf 4kTB R

P hf2B
                  =

g P 2kThf1
PG R P eG

 (2.4.14) 

It can be shown that: 

   2 2 xg G G  where x 0.2-0.5  (2.4.15) 

Optimization of CNR typically leads to designs where G2 is sufficiently large that thermal noise 

becomes negligible, but still sufficiently small that Gx remains modest; typically Gx 4 .

2.4.5  Bolometers for infrared detection

 Analysis of infrared detectors is somewhat more complex than analysis of “radio” detectors 
for which hf<<kT and “optical” detectors for which hf>>kT.  The most common such detector is 
a bolometer, which focuses the incoming radiation on a heat-sensitive element having a 
resistance R that depends on the temperature T. For the circuit illustrated in Figure 2.4-15 the 
incoming signal power Ps heats R(T) thus changing the output voltage vout .  Because such 
detectors are most sensitive at low temperatures, they are thermally coupled to a heat sink at a 
bath temperature Tb by a thermal conductivity Gt  (watts/K).  The thermal conductivity of a heat 
pipe equals Pt T , where T is the temperature difference across the heat pipe and Pt  is the 

resulting flow of thermal power through the heat pipe.  Typical bath temperatures Tb are the 
boiling points of helium (4K) and nitrogen (77K). 
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Figure 2.4-15  Bolometer circuit diagram 

 Although some simple bolometers detect heat by bending a bi-metallic strip or producing 
motion by heating a gas which expands, sensitive detectors usually employ n-type 
semiconductors containing donors in the band gap at energy kTd  below the bottom of the 
conduction band, as suggested in Figure 2.4-16. 

Figure 2.4-16  Bolometer detector energy diagram 

Photons with energy greater than kTd  can ionize donor atoms and introduce electrons into the 
conduction band so as to decrease the detector resistance R where: 

   dT T
oR R e   (2.4.16) 
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The operating temperature Tb of the detector should be sufficiently small compared to Td  that 
photon excitation is the dominant process for detector ionization. 

 Bolometer responsivity  S is the incremental sensitivity of the output voltage vo to changes 
in the input signal power Ps:

   2o
s

s s

v R PS I  where  P I R P
P P P

 (2.4.17) 

The total power input to the detector includes ohmic heating I2Rplus the absorbed photon power 
Ps; differentiating this total power P with a respect to signal power Ps  yields: 

   
12 2

s s

P R P RI 1 1 I
P P P P

 (2.4.18) 

where R bias is typically much larger than the detector resistance R so that the bias current I can 
be assumed constant and independent of Ps.  Combining (2.4.17) and (2.4.18) yields: 

2 TR R R RS I 1 I  where 
P P P T P

 (2.4.19) 

We note 
t

T 1
GP

 and: 

   dT T d
o 2

RTR R e
T T T

  (2.4.20) 

where we have assumed that the energy gap kTd  is small compared to the thermal energy 
associated with the bath operating temperature Tb of the detector, i.e. d bT T 1.  Combining 

(2.4.19) and (2.4.20) we find the desired expression for bolometer responsivity: 

   
2

d d
2 2

t t

IT R I T R
S  1

G T G T
  (2.4.21) 

Equation 2.4.21 suggests that there is an optimum bias current I, since responsivity S approaches 
zero in the limits where I approaches either zero or infinity. 
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Figure 2.4-17  Waveforms exhibiting both shot noise and random recombinations, or 
recombination noise 

 Four different noise processes can contribute to the total bolometer noise.  First, thermal 
noise can be contributed by the resistances in the detector R and in the bias resistor R b.  The 
photon noise statistics will be a combination of the statistical behavior in the optical and radio 
limits.  In addition, since phonons mediate the heat flux to the thermal bath and are discrete, they 
will contribute phonon noise.  There can also be recombination noise due to the finite random 
lifetimes of excited carriers; it generally increases the shot noise associated with carrier creation 
by less than a factor of two.  Figure 2.4-17 suggests how random recombinations in a 
photoconductor can increase the shot noise associated with current flow through it. 

 It is customary to characterize noise in infrared detectors in terms of their noise-equivalent

power (NEP), the dimensions of which are -1 2Watts Hz .  For example, from (2.1.30) we see that 
the rms Johnson noise voltage produced by a resistor R at temperature T is : 

   1 2
J bV 4kT R v Hz   (2.4.22) 

For the bolometer of Figure 2.4-15 where R bias R , the Johnson noise contribution to vout  is 
dominated by the Johnson noise from the detector resistance R because the voltage divider 
diminishes the Johnson noise from the bias resistor by a factor of BR / R R .  In this limit,  

   J J J
s

VNEP V V S
P

  (2.4.23) 

This expression is directly analogous to that used earlier for the sensitivity of a total-power 
radiometer: 

   o
rms orms A

v
T v

T
  (2.4.24) 

 Although phonon noise is difficult to evaluate exactly, simple approximations provide some 
intuitive understanding.  Phonons are associated with acoustic waves propagating through solids 
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at frequency f, where hf kT , as usual.  Figure 2.4-18 suggests how the slightly unbalanced 
phonon fluxes of nR and nL phonons per second are moving to the right and to the left, 
respectively, between the photoconductor chip and the thermal bath through a path with thermal 
conductivity Gt .  The net thermal flux into the bath averages P+watts and the temperature drop 
from chip to bath is T.

Figure 2.4-18 Phonon thermal transport in a bolometer 

The net heat flux P+ into the bath is: 

   R chip L bath R L tP k n T n T kn T n n n G T  (2.4.25) 

The random fluctuations in detector temperature associated with the random heat flux exiting the 
device can approximated for this simple model as: 

   
t

2
G P t tNEP kT 2n kT 2G k 2kG T  (2.4.26) 

which closely approximates the standard answer: 

   
t

2 1 2
G tNEP 4kG T   W Hz  (2.4.27) 

This expression for phonon noise suggests it can approach zero if the thermal conductivity Gt
approaches zero.  However, this option would substantially increase the detector temperature T, 
and therefore there is an optimum conductivity G t .

 To compute the radiation contribution NEPR to the total detector NEP we first need to 

compute the variance 2
n  of the number ni  of  photons in the ith mode of a resonating cavity, 

where Ei hfi .  The Maxwell-Boltzmann distribution of photons in thermal equilibrium defines 
the probability p(n) of having n photons with frequency f: 

   n hf kTp(n) D e   (2.4.28) 
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where D is a constant to be determined using the constraint that: 

   nx

n 0 n 0

p(n) 1 D e   (2.4.29) 

where x = hf/kT.  It is useful to define: 

   k nx
k

n 0

S x   n e   (2.4.30) 

then it follows that: 

   k 1 k
dS x S x

dx
  (2.4.31) 

   x
oS x 1 1 e   (2.4.32) 

and the sum (2.4.29) becomes: 

   nx
o

n 0 n 0

D e D S p(n) 1  (2.4.33) 

   hf kT
oD 1 S 1 e   (2.4.34) 

 The expressions above simplify evaluation of the variance of the number of photons per 

mode, n
2 :

   
2 222 2 2

n E n n E n E n n n  (2.4.35) 

where the average number of photons per mode: 

   nx x x
1 o

on 0 n 0

1n np(n) n e S S e 1 e
S

 (2.4.36) 
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2x 22 2 1

2 o 2xon 0

S 2en n p(n) S S n 2n
S

1 e
 (2.4.37) 

where, applying (2.4.31 to (2.4.32) it follows that: 

   
2x x

1S (x) e 1 e   (2.4.38) 

   
32x x

2 1S (x) S (x) 2e 1 e  (2.4.39) 

Combining equations (2.4.35-39) yields the desired results: 

   
2 22 2

n n n n n   (3.4.40) 

 Equation (2.4.40) says, in general and in the infrared regime, that 
1 22

n n n .  Since 
1hf kTn e 1 , it follows that in the optical limit where hf>>kT we have n 1  and n n ;

in the radio limit where hf<<kT and n 1, n n .

 With these equations we may now evaluate NEPR(f), the radiation noise-equivalent power.
Consider a black, perfectly absorbing patch of area A upon which blackbody radiation of 
temperature ToK is incident within a solid angle of  steradians.  As shown further below, the 
rms fluctuation in power is: 

   
1 22

p s n(watts) n hf   (2.4.41) 

where ns is the number of states in a cavity in B , B is radio frequency bandwidth (Hz), and  is 
the time interval of interest, which later will be linked to the reciprocal of post-detection 
bandwidth.

 To find pwe must first find ns, the number of states impacting the sensor within B .

s
degrees of freedom energy states

n electromagnetic modes in A
electromagnetic mode degrees of freedom

 (2.4.42) 

The number of electromagnetic modes m in A  can be found by multiplying A  by the number 
of modes ster-1 m-2.  The desired modal density can be found by dividing the expression (2.1.27) 
for intensity oI f , ,   by power spectral density in a single-mode TEM line: P (f) in watts/Hz 

(2.1.14).  This results in: 
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   2 2 2 -1 -2 2 2m A ster m 2f c modes ster  m A 2f c   modes  (2.4.43) 

Each of these m modes has a 2B  degrees of freedom, corresponding to 2B pulses per second 
times  seconds.  Finally each energy state hf has two degrees of freedom:  sin t and cos t.  
Substituting these expressions in (2.4.42) results in: 

   2
sn m 2B 1 2 sin f c A 2B  (2.4.44) 

 The variance in 2
E  of the cavity energy is the product of the number ns of states at hf in B

times the variance of state energy: 

   22 2
E s nn hf   (2.4.45) 

 The variance in arriving photon power averaged over time interval  is: 

   
22 2 2 22 2 2 2

E s nn hf 2A hf c B n n hf Watts  (2.4.46) 

which is the “quantum limit” imposed by intrinsic photon fluctuations associated with the radiant 
energy incident upon the bolometer.  If the bolometer has a boxcar integrator h(t) of duration 0.5 
seconds, this corresponds to a 1-Hz post-detection bandwidth; if we substitute 0.5, we 
obtain:

   
2 2 -1 2

R
fNEP (f ) 4A B n n hf 2     W  Hz
c

 (2.4.47) 

Expression (2.4.47) is the noise-equivalent power spectral density due to radiation noise. 
 If we are viewing a black body at all frequencies, then (2.4.17) should be integrated over all 
frequencies to yield NEPR , where: 

   

1 2
2 22

R
0

fNEP 4A hf n n df
c

 (2.4.48) 

To perform the integral over frequency, recall: 

   
hf kT1

hf kTo

S en(f )
S 1 e

  (2.4.49) 
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therefore, after some computation, it follows that: 

1 2
4 -1 2SB

RNEP 4A (4kT) T   W Hz  (2.4.50) 

where SB  is the Stefan-Boltzmann constant and equals 5.67 108  Wm-2K 4, and T is the 
equivalent temperature of the blackbody radiation arriving at the detector.  For the infinite-
bandwidth case (2.4.50) can be simplified further by integrating Planck’s law over frequency to 
find Pr, which is the total power radiated by a black body characterized by A and T and radiating 
at normal incidence into a small solid angle .

   4SB
rP A T  Watts   (2.4.51) 

   4
SBA T   if =2   (2.4.52) 

Therefore, for the infinite bandwidth case and normal incidence, (2.4.50) becomes 

   1 2 -1 2
R rNEP P 16kT   W Hz  (2.4.53) 

 Therefore to minimize RNEP  we need to minimize Pr , and therefore detector temperature 
T and detector area A.  As a simple example consider the radiation noise associated with a 

detector of area A equal 1- mm2 operating at liquid helium temperatures  and facing 2
steradians at 4K.  If we substitute  into (2.4.50), where a factor of 1/2 corrects for 

integration of (2.4.50) over 2  steradians, we obtain 16 -1 2
RNEP 2 10   W Hz .  Since for 

most detectors some portion of their exposed solid angle or spectral band originates from 

surfaces at higher temperatures, such values near 10 16 represent a practical lower bound; NEP’s 

near 15 -1 210   W Hz  are more common, and total system NEP’s near 10 13 10 15 are still 
more common when Johnson, phonon, and photon noises are superimposed. 

2.4.6  Optical superheterodyne receivers

Optical superheterodyne receivers translate optical signals to low frequencies where they 
can be amplified with low-noise amplifiers, as suggested in Figure 2.4-19.  We assume that S 
signal and P local oscillator photons/sec arrive at the photodetector, or “mixer”, which has a 
quantum efficiency of .  For these two beams to interact they must have the same polarization 
at the detector.  In most systems a 3-dB loss is incurred at the beam splitter because the 
frequencies of the two beams are usually too close together to permit a dichroic beam splitter to 
be used.  For reasons explained later, the bandwidth B of the i.f. amplifier is usually quite 
narrow.  The output of the mixer may be amplified and then used for communications purposes, 
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or squared and averaged to produce a power spectral density measurement at one or more 
frequencies.

Figure 2.4-19 Optical superheterodyne circuit 

 In the absence of a local oscillator the mixer output in equivalent photons/sec detected is 
S D where D is the number of photons/sec detected in the dark.  This dark count arises from 

thermal excitations, cosmic rays, radioactivity, and related sources.  If we represent the signal 
s(t) and local oscillator p(t) as monochromatic sources, as from a laser, where 

ss(t) 2S cos t , then op(t) 2P  cos t  and their sum squared is 
2

s o2S cos t 2P  cos t  and: 

   m i.f.v (t) constant S+P+ SP  cos t D  (2.4.54) 

where mv (t)  is the number of amplified counts from the photodetector and i.f . s o .

Since S is typically negligibly small compared to D, the local oscillator’s strength P is chosen so 
that SP D .

 If the constant in (2.4.54) is unity, then the units of v m(t) are counts/sec, which may be 
divided into signal and noise components: 

   m i.f.v signal SP  cos t   (2.4.55) 

   m
counts/secv rms noise 2 P

Hz
 (2.4.56) 

where we have assumed the output has been smoothed by a 0.5-second boxcar integrator (e.g. by 

the bandpass filter B) to yield the units of 1 2Hz , and the noise approaches 2D  if D>> P .  In 

general the integration time  of the boxcar integrator h(t) at the output for Figure 2.4-19 is not 

f
h(t)

(photons  s-1)
S = signal 

photodetector “mixer”

P  photons/sec 
(laser L.O.) 

vm(t) = s(t)p(t) communication signal 

vo

Radiometer 
output

B B

2



95

0.5 sec.  If the mixer output is filtered by a bandpass filter of width B Hz and then squared to 
produce a normalized radiometer output vo (see Figure 2.4-19), then: 

   2 2
o i.f .v SP cos t   (2.4.57) 

   
noise

2
ov 2 PB B  for P>>S, P>>D  (2.4.58) 

where  is the duration of the boxcar filter h(t).  The carrier-to-noise ratio CNR for this optical 
superheterodyne radiometer is approximately the ratio of (2.4.57) and (2.4.58): 

   2CNR SP PB B S B  (2.4.59) 

Note that the carrier-to-noise ratio in the limits where P>>D is independent of P and D, and 
increases with  and decreases with B.  That is, large bandwidths B pass more local oscillator 
noise.  Equation (2.4.59) suggests we might want  >> 1/B for further noise smoothing, but since 
we normally choose 1/ B, (2.4.59) approaches an asymptotic optimum: 

   CNR S   (2.4.60) 

By merely increasing S and  the CNR can be made almost arbitrarily large, independent of 
traditional noise sources; this is the principal advantage of optical superheterodyne receivers.  
However the conditions under which they are superior are limited. 

 If a simple detector were employed, the output associated with the signal (normalized to 
photon counts) would be: 

   
sigo v S (gain normalized)   (2.4.61) 

   
noise RMSov 2DB B   (2.4.62) 

In this case: 

     CNR S 2D   (2.4.63) 

This can be compared to the superheterodyne CNR: 

   S.H.CNR S B   (2.4.64) 
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Therefore a superheterodyne yields better CNR if the i.f. bandwidth B < 2D.  This can be highly 
constraining since the dark count in heavily cooled detectors can be quite low.  On the other 
hand, if this dark count is quite high, the bandwidth B can be correspondingly large before the 
shot noise associated with the local oscillator dominates.  Of course, in some systems the dark 
count D may be overwhelmed by other noises contributed by the mixer or i.f. amplifier. 

 It is interesting to compare a high performance optical superheterodyne radiometer to the 
sensitivity expression for a radio total-power radiometer.  In the radio case: 

   A RMS A R R ACNR T T T B T  for T T  (2.4.65) 

The corresponding expression for an optical superheterodyne is: 

   AOptical superheterodyne CNR= S B kT B hf B  (2.4.66) 

where the photons/sec S in the radio regime equals the total power received kTAB divided by 
the energy per photon hf.  Equating these two expressions for CNR suggests the equivalent 
receiver noise temperature TR  for the ideal optical superheterodyne is hf k , which is the radio 
quantum limit.  Thus optical superheterodyne radiometers can reach the quantum limit.  Of 
course the received power in an optical system does not equal kTAB. 


