MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

Receivers, Antennas, and Signals - 6.661

	Issued:	3/04/03
Problem Set No. 5	Due:	3/13/03

Problem 5.1

A fully back-biased photodiode (p-n junction) has a DC dark current i_o that is temperature sensitive and an energy gap E_g .

- a) Do the photo-excitations that control i_0 occur primarily in the n-type, p-type, or junction region? Explain briefly. Hint: see Figure 2.4-7 in the course notes.
- b) This thermal current i_o introduces shot noise v_{shot} (rms) across the load resistor R which adds to the Johnson noise v_J from the resistor R. In order for this shot noise v_{shot} to equal v_J from R, what should R be?

c) To within a constant multiplier, approximately how does the dark current i_0 vary with junction temperature T? Assume that T is near room temperature so that $kT \ll E_g$, and that the energy level distribution (states per volt) is uniform in the valence and conduction bands.

Problem 5.2

- a) For what kinds of detection problems would photodiodes generally perform better than avalanch photodiodes with $x \approx 0.3$? Explain briefly, using simple inequalities if appropriate.
- b) Repeat (a), but comparing PT's and PMT's to PD's and APD's. The system cost and complexity of these devices generally increase in the order: PD, APD, PT, and PMT. Refrigeration costs can exceed the device cost unless very low device power and cooling is involved.

Problem 5.3

Photodetectors emit a current pulse of A coulombs for every detected photon, and these pulses are poisson distributed in time. Two hypothetical photodetectors are being compared. Each produces a current of I_o amperes when exposed to a standard calibration light source. For detector (1) A = A_o, while detector (2) randomly has A = 2A_o/3 half the time and A = 4A_o/3 the other half of the time. What is the ratio of the rms shot noise voltages v_s associated with these two photodetectors?

Problem 5.4

How many photons per second do we need to receive in order to have a CNR of 20 dB in an optical superheterodyne receiving voice signals of bandwidth 3 kHz?

- a) Assume the dark count D is zero.
- b) Assume $D = 10^5$ counts/sec.

Problem 5.5

A certain square bolometer 1 mm on a side has responsivity S = 40, $T_o = 5K$, diode physical temperature T = 22K, and a 1-ma operating current. Its thermal conductivity to the 18K cold bath is $G_t = 10^{-7}$. The output circuit has 1-second boxcar integration and an effective bandwidth B of 0.5 Hz.

- a) What is the nominal resistance R of the bolometer under these conditions? Hint: the equilibrium heat flow to the bath equals the I^2R power dissipated.
- b) What is the nominal rms Johnson noise n_J across the output terminals? Hint: The bias resistor contribution should be negligible.
- c) What is the bolometer NEP (W/Hz) due to Johnson noise only?
- d) What is the contribution to bolometer NEP from phonon noise?
- e) What is the contribution to NEP from photon noise assuming infinite bandwidth and 2π solid angle?
- f) What one or two bolometer parameters might we change first to improve its total effective NEP? Discuss briefly.

Problem 5.6

A certain communications system between Mars and Earth uses 3-cm radiation and antennas on Earth and Mars having antenna gains of 70 dB and 50 dB, respectively. Our receiver system temperature T_s is 20K and our transmitter power P_T at Mars is 10 watts. How much bandwidth B (Hz) can we transmit while still achieving SNR = 20 dB at the Earth receiver when Mars is 10^{11} meters away?