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CHAPTER 5: WAVE SENSING SYSTEMS 

INTRODUCTION

 This chapter addresses both passive and active wave sensing systems, starting with 
interferometry and progressing to radar and synthetic aperture radar (SAR). 

5.1 PASSIVE APERTURE SYNTHESIS 

 Wave sensing systems often employ multiple apertures intercepting signals that are then 
combined to yield images representing the angular distribution and correlation properties of 
those arriving signals.  Single aperture systems were discussed in Chapter 3.  To understand how 
signals intercepted at various positions might be combined to yield images, it is useful to 
understand the statistical relationships among these signals as a function of the arriving wave 
distribution.

Consider the aperture in the x-y plane illustrated in Figure 5.1-1.  Assume multiple plane waves 
are arriving from different directions yx , .  We might imagine each such arriving plane wave 

to have been radiated by a point source at infinity located in that direction; there might be a 
continuum of such point sources radiating statistically independent signals.  Throughout this 
discussion such statistical independence will be assumed. 

The total observed complex electric field )y,x(E  can be represented as an integral over 4
steradians of the contributions associated with each of these separate plane waves.  In this case 
the total electric field can be written as 

   
2 xsin ysin

x y
e

4
E x, y E , dx y  (5.1.1) 

where yx ,E  is the uniform plane-wave expansion characterizing the arriving signals.  The 

phase factor is a simple consequence of geometry. 
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Figure 5.1-1 Aperture intercepting arriving plane-wave distribution 

 In practice we are usually interested in angles yx ,  that are small compared to unity, in 

which case the plane wave expansion associated with a given aperture distribution is 
approximately: 
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 (5.1.2) 

Again the phase factor has a simple geometric explanation. 

These first two equations can be simplified further if we define the new variables x/x , and 

 y/y :

   x yj2 x y
x y4

E x , y E , e d  (5.1.3) 

   x yj2 x y
x y A

E , E x, y e d  (5.1.4) 

This Fourier relationship, (5.1.3) and (5.1.4), can be related to an associated Fourier transform 
between the autocorrelation function of the electric field in the aperture and the angular intensity 
distribution associated with the transmitted or arriving plane waves: 
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 (5.1.5) 

where the autocorrelation function of the complex aperture field is defined as: 
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*

ER   E r E r dx dy  (5.1.6) 

Note that the aperture electric field E  is not stochastic; stochastic signals are considered later.  

Note that the transmitted intensity distribution 
2

x yE ,  is proportional to the gain G  that 

the aperture would have if it were a transmitting antenna. 

 Equation (5.1.5) quickly leads to a useful limit on the maximum angular resolution 
obtainable from a finite aperture if perfect image reconstruction is desired.  For example, assume 
the aperture is uniformly illuminated, which can be represented by a cylindrical form for 
E x , y , as illustrated in Figure 5.1-2.  Its autocorrelation function ER  therefore also has 

a finite region of support, which is a circle of radius D/ .

Figure 5.1-2 Aperture excitation function and corresponding aperture autocorrelation function 
and gain angular-frequency response. 

Equation (5.1.5) then suggests that the gain G  of this transmitting aperture is the Fourier 

transform of this pointed conical autocorrelation function.  The Fourier transform of the gain 
function G  can alternatively be interpreted as the angular spectral response of the aperture 

G f , where f  is defined as cycles per view-angle radian.  That is, an antenna pattern with 

much fine structure (good angular resolution) would have significant amplitude at higher angular 
frequencies f .  An important result follows: 
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  (5.1.7) 

The form of the aperture autocorrelation function ER  is seen to be the same as the aperture 

angular response function fG , which has no response beyond a maximum angular frequency 

/Dfmax  cycles/radian.  That is, a finite aperture of diameter D is blind to Fourier 

components in the angular intensity distribution at frequencies above D/  cycles/radian.  Angular 
frequency components above this D/  limit can be estimated only by using a priori information. 

 This relationship between the power received by an antenna AT  as a function of angle 

and the angular-frequency response (or gain) of the antenna fG  can be represented by: 

   

fTfGfT

TGT

BA

BA

 (5.1.8) 

This expression makes clear that the sensed angular-frequency distribution of received power (or 
antenna temperature) AT f  is zero where G f  is zero, i.e., beyond D/  cycles/radian.  

Reactive antennas, not discussed here, can sense somewhat higher angular frequencies; this 
option is seldom used except for antennas smaller than ~ /2.

 The foregoing can now be generalized to the case of uncorrelated stochastic signals arriving 
from different directions.  Exceptions to this assumption of zero correlation are rare and most 
commonly occur when the arriving signals are coherently reflected by obstacles within view of 
the receiving antenna.  An example of such problems is the fading associated with broadcast 
television “ghosts.” 

 We represent narrowband stochastic signals by the slowly varying random complex 
amplitude of the otherwise sinusoidal signal.  That is, we let: 

   1 1 j tE x , y , t vm  ster Re E t,x , y e  (5.1.9) 

Where y,x,tE  is a slowly varying random signal.   

 Substituting (5.1.9) into (5.1.5), we obtain 
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 (5.1.10) 

where x yE , , t  is the slowly varying plane wave expansion corresponding to the slowly 

varying complex aperture distribution E x , y , t .  The double arrows imply irreversibility for 

two reasons:  the autocorrelation operator ER  is irreversible, and so is the expectation 

operator EE R .  We can replace the expected value of the aperture autocorrelation function by 

its equivalent notation used previously for stochastic signals, x yE , , which is the Fourier 

transform of 
2

x yE E , , t .  If the units for E x , y , t  are volts/meter, then the units for 

x yE ,  are 2metervolts , and the units for 
2

x yE E , , t  are 2radianmetervolts . 

 If the plane wave expansion corresponds to arriving waves associated with an angular 

intensity distribution 2 1 1
x yI , ,f Wm Hz ster , then this intensity distribution can be 

readily found via: 

   

2
x yx yE

x y
o o

E E , ,f, ,f
I , ,f

2 B 2 B
 (5.1.11) 

where the units for these three terms are:  (vm-1)2 ohm-1 Hz-1, (vm-1rad-1)2 ohm-1 Hz-1, and Wm-2

Hz-1 ster-1, respectively, where radians and steradians are not physical units, but only serve a 
mnemonic purpose. 

 As an example of how this formalism might be utilized, consider a square thermal source of 
KTB  located at x y 0 , as illustrated in Figure 5.1-3. 

Figure 5.1-3 Aperture response to a square thermal source 
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Assume the source is 0.01 radians on a side, so that the solid angle 4
s 10  steradians.  In this 

case, for waves arriving from x, y within s.

   
2 2

x y B oE E , kT 2 2 B  (5.1.12) 

where B is the bandwidth (Hz) over which the electric field is to be measured, o  is the 

impedance of free space, and BT ( K) is the brightness temperature of the square source.  The 
corresponding intensity arriving at the aperture from angles within the source is 

   2 -2 1 1
x x y, BI , f kT 2  Wm  Hz ster  (5.1.13) 

The resulting complex electric field autocorrelation function within the aperture can be found 
from the square intensity distribution via a Fourier transform of the form (5.1.3), as suggested in 
Figure 5.1-4, where we have used (5.1.11) to introduce the factor 2 oB.

Figure 5.1-4 Fourier relationship between angular intensity function and complex field 
autocorrelation function in an aperture. 

Note that

   
x

2 B
o o s oE 2

kT
(0,0) 2 E E(x, y, t) 2 B S

2
 (5.1.13) 

Where oS  is the source flux (watts/m2).  Thus we can observe the complex field autocorrelation 

function E x yx
, , and from its Fourier transform learn the shape of the intensity 

distribution.  Then, using Figure 5.1-4 or (5.1.13), the value of BT  can readily be obtained. 
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 Previously we have considered autocorrelation functions in time and in space, and so we 
may also consider autocorrelations of the complex field as a function of simultaneous offsets in 
space and time,.  For example, for a given polarization, we can take the Fourier transform 
between time and frequency to obtain: 

time/
frequency

2 2 1
o oE Ex y x, yx x

2 1 1B
x 2

space
angle

, , 2 Wm ,f 2 Wm Hz

kT ,f
Wm Hz sterI ,f

2

(5.1.14)

In (5.1.14) the Fourier transform between time and frequency can be followed by the Fourier 
transform between spatial offset  and angle . The separate time and space Fourier 

transforms in combination yield the transform between E x yx
, ,  and xI ,f .

These Fourier relationships may now be used to characterize aperture synthesis systems which 
operate on signals that are intercepted by two or more small antennas and then processed so as to 
yield the angular response characteristics of much larger antennas.  This process is called 
aperture synthesis.

 Assume two small antennas can be moved within a rectangular field measuring 
x

 by 
y

wavelengths.  These dimensions define the maximum values of  for which the field 

autocorrelation function E  can be measured.  Interchanging the outputs of the two small 

antennas converts  to , so that 

   *
EE   (5.1.15) 

As a result, the area covered in  space has four times the area of the available field, as 
suggested in Figure 5.1-5.  Within a field of dimensions max  it is necessary only to measure 

E  for values of  in quadrants A and B because quadrants A* and B* contain the complex 

conjugates of observations made in quadrants A and B. 
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Figure 5.1-5 Observable range of  within a field of dimensions 
max

.

The dimensions of the observed space  is 
max

2 , or x2L  by y2L .  These are the 

dimensions of the weighting function W  which masks the true autocorrelation function 

E , and therefore determines the angular resolution and effective beamwidth of the 

synthesized aperture: 

   
E

2

W

W E

  (5.1.16) 

Figure 5.1-6 illustrates this simple relationship graphically.  The Fourier transform of a 
rectangular boxcar function is a two-dimensional sinc function with nulls at angles that are 
multiples of /2Lx and /2Ly.  Note that the synthesized antenna pattern actually has negative 
response values at some angles, unlike single-aperture antenna patterns for which the antenna 
gain is always positive.  The 3-dB antenna beamwidths are slightly larger than the positions of 
the first nulls at /2L.  If the weighting function W  is tapered for larger values of , the 

amplitudes of these sidelobes can be diminished at the expense of a small increase in antenna 
beamwidth.
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Figure 5.1-6 Maximum-resolution antenna pattern synthesized using a finite rectangular field 

 Note that the beamwidth of the synthesized pattern available with a rectangular field of size 

xL  and yL  is half that achieved with a uniformly illuminated aperture having the same 

dimensions as that field; /Lx, /Ly.  See Figure 5.1-2 for an example of the limits to the angular 
resolution of a finite aperture.  Aperture synthesis permits substantially better angular resolution 
because each of the separate responses to pairs of antennas can be amplified independently 
before these point-pair responses are superimposed to yield the final synthesized system 
response.

Figure 5.1-7 Observed sampled autocorrelation function for a discrete T-array of antennas 

 It is not necessary to position pairs of small antennas in all portions of the field.  For 
example, the simple “T-array” in Figure 5.1-7 suffices to fill the rectangular field  with a 

sampled grid of observations corresponding to all possible pairs of antennas in the T-array. 

More efficient than the T-array in its use of a finite field is the “U-array”, for which three sides 
of the field are lined with small aperture antennas. 
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 Because the observations of  are generally comprised of discrete samples arranged on 

a rectangular grid, the weighting function W  is both finite and sampled, with readily 

understood consequences.  Since: 

   
2

x y 2 1 1

o o

, ,f E ,f
I ,f Wm ster Hz

2 B 2 B
 (5.1.17) 

it follows that multiplication by the sampled weighting function W produces the result: 

   oE ,f 2 B W W I ,f  (5.1.18) 

which can be represented graphically, as illustrated in Figure 5.1-8. 

Figure 5.1-8 Aliasing of synthesized images due to discrete sampling of the complex field 
correlation function E

Note that the finite extent of the W  produces sinc functions of infinite extent, although they 
have generally negligible values for angles beyond /2L, and therefore synthesized images 
always risk aliasing, even for very small values of antenna displacement .  Fortunately, in 
many applications the source of interest is alone in the field of view of the individual antenna 
elements, and the rest of space is relatively empty.  Examples of this situation occur when strong 
astronomical sources are imaged against the blank background of surrounding astronomical 
space, or when strong radiating objects are observed against an extended passive background. 
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Figure 5.1-9 Image aliasing in synthesized images due to discrete antenna placement 

For example, consider the case where the true source distribution in the sky is the pear-
shaped object illustrated in Figure 5.1-9.  In this case the discrete set of observations 

oE ,f 2 B W , when Fourier transformed, yields a set of duplicate aliased images 

with spaces between their centers of x  and y .  Each of these replicated images has 

been blurred by a sinc function having its first nulls at xL2  and yL2 .  If the source does 

not have a small angular extent, then the resulting images may be aliased and overlapped, 
producing confusion which is difficult to remove without additional information.  The estimated 
retrieved source intensity distribution illustrated in Figure 5.1-9 is characterized by: 

   ABÎ ,f I ,f W G  (5.1.19) 

To minimize the effects of image aliasing it is therefore advisable to use spacings between 
adjacent antenna positions  which are less than the reciprocal of the source width in radians, 

and preferably a small fraction of that. 

 Often it is possible to obtain multiple antenna spacings with a smaller fixed number of 
antenna positions because the viewing geometry evolves in time producing effective antenna 
movement.  For example, astronomical aperture synthesis systems often use a small number of 
antennas which can be moved on a railroad track to a small number of discrete positions where, 
for each such position, the rotation of the earth sweeps the effective  across a significant 

portion of the space , as suggested in Figure 5.1-10. 
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Figure 5.1-10 Typical  observed by two antennas over a single day and over four days. 

As the earth spins a single pair of antennas observes a projected baseline  that changes as 

suggested in the figure, sweeping out a curve in  space, together with its complex conjugate 
mirror image.  Repositioning the antennas daily produces an array of such curves, also as 
illustrated.  To avoid aliasing it is important that the spacings between these curves, e.g. ,

are small.  Furthermore, if these curves do not cover the space  completely, the resulting gaps 
can lead to excessive sidelobes in the synthesized image.  The radioastronomy community 
typically replaces the variables 

x
 and 

y
 by their equivalents: u,v.  An important advantage 

often enjoyed by the astronomical community is that the source features of interest are often 
simple, such as the source diameter, or the separation of two point images.  In these simple cases 
very sparse coverage of the u,v plane suffices to yield the desired image parameters. 

5.2 INTERFEROMETERS 

Aperture synthesis involves mathematically combining the signals from many pairs of antennas, 
or a moveable pair, to form a synthesized image.  In other cases, a single pair of antennas can 
provide the desired information.  Interferometry was first demonstrated for astronomical 
purposes by Michaelson, who placed two small mirrors in the 100-inch aperture of the Mount 
Wilson telescope and caused the reflected beams to interfere, forming a fringe pattern where the 
observability of the fringes depended on the diameter of the star being observed.  Similar 
interferometers are used for aperture synthesis and source localization.  Figure 5.2-1 illustrates 
how signals from a pair of radio antennas might be generated before being combined. 
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Figure 5.2-1 Characterization of a pair of antennas used for interferometry. 

The output voltages from each antenna tvi  are each proportional to the square roots of the 

corresponding antenna gain iG .  One of the antennas has an additional phase adjustment je .  
In the narrowband case where we can represent these signals as having slowly varying complex 
envelopes t,y,xE , the voltages tvi  may be represented as: 

   

j t
1 1 e 1

j j t
2 2 e 2 x y

v (t) k R G E(x, y, t)e

v (t) k R G E x , y , t  e e
 (5.2.1) 

where the constants ik  reflect the fact that each receiver may have amplifiers with different 
gains.

 For many interferometers the computed output is the expected value of the product of the 
two output voltages: 

j1 2
1 2 1 2 x y

k k
E v (t)v (t) Re G G E E(x, y, t) E x , y , t e

2
 (5.2.2) 

where 21GG  is often replaced by the cross gain 12G , and where we recall: 

BAR
2
1

)t(b)t(aE e   (5.2.3) 

Equation (5.2.2) must be modified if the bandwidth of these signals exceed some limit which 
depends on the separation L between the antennas, and on the source angle x  projected on the 
x-axis connecting the two antennas, which are configured as suggested in Figure 5.2-2. 

je
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Figure 5.2-2 Envelope delay in a two-element interferometer 

Bandwidth enters into (5.2.2) when the slowly varying envelope t,y,xE  varies sufficiently 

rapidly that the delay in arrival time at the two antennas, csinL x , approaches the envelop 

correlation time  1/2B.  In this case (5.2.2) may be written as: 

   

1 2 x
1 2 12 es

j Lsin 2c jx x
x y

k k Lsin
E v (t)v (t) G E R E x, y, t E

2 2c

Lsin
x , y , t e  e

2c

 (5.2.4) 

The expected value of the product of the two envelopes can be simplified, yielding: 

   
c

sinL
eeRG

2
kk

)t(v)t(vE x
)t(E

sinL2jj
es12

21
21

x  (5.2.5) 

where the factor /sinL2jj xee  characterizes the monochromatic fringe, and xE t Lsin c

characterizes the envelope that modulates the fringes.  This fringe modulation envelope is a sinc 
function corresponding to the rectangular bandpass filter illustrated in Figure 5.2-3, and yields a 
null when BL2csin x  seconds. 

L

v2(t)

X

v1(t)

seconds
c

sinL x



251

Figure 5.2-3 Fringe modulation envelope resulting from finite bandwidth in a two-element 
interferometer 

 The resulting combined fringe pattern is illustrated in Figure 5.2-4, which shows the 
influence of the cross gain 12G , the monochromatic fringe, and the fringe envelope. 

Figure 5.2-4 Bandwidth-limited angular response of polychromatic interferometer 

 The polychromatic fringe pattern illustrated in Figure 5.2-4 represents the superposition of a 
continuum of monochromatic fringe patterns at each frequency within the bandwidth B.  Because 
all colors contribute equally to the central fringe, it is called the white fringe.  For visible 
wavelengths, as we move toward the first null in the polychromatic fringe pattern the shorter-
wavelength blue band approaches its null first, so the residual fringes are predominantly red.  As 
the red polychromatic band later approaches its first null, the blue band has re-emerged and the 
fringes appear bluish.  Further out in the fringe pattern the nulls of the different wavelengths are 
so out of phase that the colors become washed out and, with respect to the human visual system, 
again appear white. 

 The fringe envelope defined in (5.2.5), csinL x)t(E , reaches its first null as suggested 

in Figure 5.2-3 when B1csinL x  seconds, so that: 

0 fB-B
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   1forLBcLBcsin x
1

x null
 (5.2.6) 

Thus the angular resolution of a polychromatic system viewing a source which is white over the 
bandwidth B can have extremely high angular resolution when LB is large compared to c. 

 For example, consider an interferometer with two radio or optical sensors L = 100 meters 
apart that produce signals which are coherently combined to form a fringe pattern within a 
bandwidth B of 1 GHz.  In this case (5.2.6) suggests the polychromatic first null will occur at an 

angle of minarc10mrad310100103LBc 98 .  If the source being observed is 

approximately monochromatic B c , then the first null is governed instead by the 

monochromatic fringe pattern. 

 Equation (5.2.5) governs interferometers where a pair of signals is multiplied.  In practice 
other interferometer circuits are often used to synthesize source angular distributions, as 
suggested in (5.1.10).  Many interferometers simply add the two received signals a and b 
coherently before squaring them, as suggested in Figure 5.2-5 and equation (5.2.7).  The 
overbars in (5.2.7) and Figure 5.2-6 signify the time average of the associated variable. 

   ab2bav 22
o   (5.2.7) 

Figure 5.2-5:  Simple adding interferometer 

The interferometer output ov  given by (5.2.7) is illustrated in Figure 5.2-6, and takes the 

form of a fringe pattern with inter-null spacings of /L and having amplitudes modulated by the 
single-antenna gain pattern.  We have assumed in Figure 5.2-6 that 21 GG . 

2 2 2
ov (t) a b 2ab

a(t) b(t) 
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Figure 5.2-6:  Point-source response of a symmetric two-antenna interferometer. 

 Nulls occur only when the two signals a and b have the same amplitude and are 180  out of 
phase, as suggested in Figure 5.2-7.  If the signals are in phase when  = 0, then the first null 
occurs when: 

   LifL2L2sin 1
null  (5.2.8) 

Therefore the spacing between nulls is twice L2 , or L .

Figure 5.2-7:  Angular positions of nulls in a simple adding interferometer 
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 If two point sources are present and radiating incoherently in the same frequency band, the 
response function of the interferometer becomes the linear superposition of the point source 
responses illustrated in Figure 5.2-6.  If the two sets of nulls spaced at L  do not coincide 
perfectly, then the interferometer response to a spread source becomes that illustrated in Figure 
5.2-8, where the fringe pattern now has a DC term and the fringes are bounded by envelopes 
having amplitudes maxv  and minv  at the origin where 0x .  Both figures 5.2-6 and 5.2-8 

illustrate the DC term 22 ba , and the AC term ab2  given by (5.2.7). 

Figure 5.2-8:  Response of a simple adding interferometer to a spread source 

 Simple interferometers yield four parameters of interest when observing a spread source 
seen against a blank background; these are maxv , minv , 1T , and T, where T is defined as the 

distance between nulls L .  The complex fringe visibility V  can be deduced from the 
interferometer output: 

   12 T Tmax min
E A

max min

v v
V  e T

v v
 (5.2.9) 

It can be shown that the complex fringe visibility V  is directly proportional to E ,

which is the approximate Fourier transform of the angular antenna temperature distribution 

AT . 
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 The Fourier relationship between the aperture autocorrelation function and the source 
angular distribution, or between the fringe visibility function and the source angular distribution, 
can be understood in terms of the sinusoidal response of the adding interferometer to a 
monochromatic point source.  This relationship can be seen mathematically by considering 
(5.2.11), which states once again that the antenna temperature, as a function of antenna pointing 
angle , is the convolution of the antenna gain G  with the sky brightness distribution 

BT .  The antenna temperatures could, of course, characterize non-thermal sources such as 
communication signals provided that the signals arriving from different directions are 
uncorrelated.  If we Fourier transform each term and operator in (5.2.11), we obtain (5.2.10), 
which states that the observed autocorrelation function of the aperture field distribution A

is the true field autocorrelation function 
E

 times the windowing function introduced by the 

finite nature of the observing aperture ER , where ER  is suggested by Figure 5.2-9 for a 

uniformly illuminated square aperture of dimensions D . 

Figure 5.2-9:  Field autocorrelation function characterizing a uniformly illuminated square 
aperture 

We may also compute the Fourier transforms of each of the variables and operators in (5.2.11) to 
yield (5.2.12), which states that the angular Fourier transform of the antenna temperature 

fTA  is the product of the antenna gain and sky brightness Fourier representations 
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As noted earlier, the angular spectral response of the antenna gain G f  is the same as the 

autocorrelation function of the aperture field distribution, and therefore is zero for a broad range 
of frequencies when the aperture dimensions D  are finite. 

 In the case of the ideal two-point interferometer in Figure 5.2-1, the aperture field 
autocorrelation function ER  consists of three impulses spaced D  apart, where the central 

impulse has twice the amplitude of the others.  This trio of impulses also characterizes the 
angular frequency response for that interferometer spacing, G f , which therefore consists of a 

cosine wave plus a DC term when  = 0, and a sine wave plus a DC term when  = /2.  Together 
they represent the real and imaginary parts of G .  These cosine and sine responses of the two 
element adding interferometer are illustrated in Figure 5.2-10. 

Figure 5.2-10:  Cosine and sine responses for a two-element adding interferometer viewing a 
point source at  = 0 

The antenna temperature AT 0  is the interferometer gain function G '  times the source 

brightness temperature BT ' , integrated over all angles ' .  If the two path lengths into the 

adder and square law device illustrated in Figure 5.2-5 are equal, then the antenna gain G  is 

the cosine response of Figure 5.2-10.  If a phase delay  of 90  is added to one arm of this 
interferometer, the response peaks at a slightly displaced angle x , as suggested by the sine 
term of Figure 5.2-10.  Therefore, once the DC terms are omitted, the remainder are simply the 
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sine and cosine terms of the source distribution at the angular frequency /D, where D is the 
separation between the two interferometer apertures.  If we observe enough frequency 
components in two dimensions, the result can be Fourier transformed to yield the source angular 
distribution, as shown previously. 

 The ideal monochromatic point response of a two-aperture interferometer is a cosine wave, 
as illustrated in Figure 5.2-10, having a period of D .  If the source and receiver are broadband, 

then the fringe spacing D  varies over this band so that the interferometer output is actually the 
superposition of the continuum of fringe patterns corresponding to all the frequencies which 
have been added in phase, as suggested in Figure 5.2-11. 

Figure 5.2-11:  Creation of white fringe in a broadband two-element interferometer 

As noted before, the central fringe of an optical interferometer operating in the visible region 
appears to be white because all colors add equally at the origin.  At angles away from this 
“equal-delay” central fringe, the fringes become increasingly colored and then gray.  If a delay 
line is added to one interferometer, the position of the white fringe shifts correspondingly in 
angle.  Very narrow effective antenna beams can be created when observing broadband sources 
by using this technique with a variable delay line that can sweep the antenna pattern across the 
source.

 The DC terms appearing in the simple adding interferometer are routinely eliminated by 
using Dicke-switch or multiplying interferometers, as illustrated in Figure 5.2-12. 
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Figure 5.2-12:  Two element Dicke-switched adding interferometer 

Since the interferometer response when the Dicke switch is in the +1 position is 180  out of 
phase with the response for the –1 switch position, and since the interferometer subtracts these 
two responses continuously at high speed, the radiometer output o  preserves only the 

product term < 2ab > of (5.2.7) as the source traverses the beam. 

 It is generally more convenient to have an interferometer that directly produces the real and 
imaginary parts of the field autocorrelation function , even when the source is stationary in 

the sky.  Two such circuits are suggested in Figures 5.2-13 and 5.2-14.  The first figure is a 
Dicke-switched multiplying interferometer where, if the switch were omitted, the interferometer 
would produce the same output, but would be more subject to the effects of gain fluctuations.  
The circuit of Figure 5.2-14 is a lobe-scanning interferometer, where the local oscillators driving 
the two receivers are at slightly different frequencies, causing the fringe pattern to sweep at a 
known rate across the source, permitting both the sine and cosine terms to be measured. 
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Figure 5.2-13:  Multiplying Dicke-switched interferometer 

In the lobe-scanning interferometer stable outputs are obtained for stationary sources by 
demodulating the lobe-scanning response at the lobe modulation frequency m by means of the 
two multipliers immediately preceding the final integrators.  The signal combination path that 
involves no delay produces the real part of the field autocorrelation function, whereas the path 
delayed 90  yields the imaginary part.  Because these multipliers produce two sidebands, the 
undesired one must be filtered out.  The upper-sideband (USB) filter performs this function at 
r.f., and the two integrators perform the same function at baseband. 
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Figure 5.2-14:  Lobe-scanning interferometer 

 One use of such interferometers is to detect unresolved point sources, while ignoring all 
extended ones.  For example, it is possible to detect radio-emitting point sources like stars with 
such interferometers by integrating hours or days.  Since almost all astronomical radio sources 
are spatially extended, this technique can be quite successful, but does require any integration 
drift to be calibrated.  This can be done in Dicke-radiometer fashion by periodically offsetting 
the demodulation frequency m  from its true value to force the integrator to zero. 

 Traditional analog systems are increasingly being replaced by digital equivalents.  One 
popular example is the cross-correlation interferometer spectrometer, such as the one illustrated 
in Figure 5.2-15 
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Figure 5.2-15:  Cross-correlation Dicke interferometer spectrometer 

In this case the two signals a and b are added, digitized, and fed to a delay line or shift register 
and also to multipliers operating on each of the outputs of that delay line.  These products are 
each integrated for a period of time T, at the end of which the computer produces the Fourier 
transform, yielding the desired field autocorrelation function f, .  In this case the Fourier 

transform is performed only in delay space (seconds), not in spatial-offset space .  As before, 
the Dicke switch permits use of an adder instead of an ideal multiplier, because it cancels out the 
DC terms leaving only the multiplication terms in the final output.  The multipliers operating on 
the delay line outputs are typically digital, where the A/D converters can precede or follow the 
adder combining the two signals a and b.  Note that when a = b, the output f,  simply 

becomes )f(S)f,0( ; that is, the device operates purely as a spectrometer. 

 A more common variation of this circuit is suggested by Figure 5.2-16, where the Dicke 
switches are omitted and the two antenna signals are multiplied following the delay line.  Note 
that Figure 5.2-16 has omitted the necessary A/D converters and band limiting filters. 

 If the antennas are a considerable distance apart, separate local oscillators may be used, but 
they must somehow be synchronized, for example, by using the circuit illustrated in Figure 5.2-
17.
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Figure 5.2-16:  Cross-correlation multiplying interferometer spectrometer 

Figure 5.2-17:  Local oscillator phase sychronization circuit 

The fundamental oscillator on the left side of the figure is typically multiplied by some integer to 
produce the first local oscillator (a).  It is also similarly multiplied to produce the second local 
oscillator (b), but after passing through a long transmission line connecting the two sites and a 
variable-length “line stretcher.”  The line length is continuously and rapidly varied by a servo 
system observing the relative phase between the original fundamental oscillator signal and a 
reflected version which has traveled twice through the unknown length of the transmission line 
connecting the two sites.  In order to distinguish the desire reflected signal from reflections 
which could occur anywhere else in the system, the signal reaching the second site is modulated 
by a switch which is controlled by a Dicke oscillator, as illustrated.  The feedback control system 
is operated so that the phase difference, as observed by the phase detector, remains zero.  This 
technique is used also in communications and telemetry systems. 

 If the distance between two sites is too great to permit even this technique to work, then 
highly stable independent clocks, one at each site, can be used.  This technique is widely used in 
very-long-baseline interferometry (VLBI).  In this case the data at each site is mixed to baseband 
using the accurate clock, converted to digital form, and stored either for manual delivery or for 
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asynchronous delayed transmission.  These baseband digital signals a  and b  from the sites are 
later brought together with time synchronization controlled by a coarse system such as that 

provided by the satellite based global positioning system (GPS), which readily permits 810
second accuracy, or the more primative LORAN-C system, which permits one microsecond 
accuracy.  Although temperature stabilization can improve the intrinsic stability of crystal 

oscillators, which ranges from 510~  to values of 810~ , cesium-beam clocks of 1210~

accuracy or hydrogen masers approaching 1514 1010  accuracy are generally preferred. 

 If the clocks are perfect, then the two signals a  and b  can be cross-correlated to find the 
time offset, permitting its correction.  Although there is an unknown fixed phase offset that 
results, this can be established by definition or by observing a reference source in the sky.  Since 
the clocks drift slightly, however, the time over which phase coherence is obtained is finite.  The 
signals are then averaged over these finite intervals to determine the magnitude of the correlation 
coefficient, and to track the phase shift.  This phase shift can be unwrapped to extend the time 
intervals over which the magnitude can be averaged.  Unwrapping involves removal of the 2
phase ambiguities that result whenever the true phase crosses the 0/2  boundary. 

 For example, if a cesium clock accurate to 1210  drifts  radians in approximated one 

minute, then f,ˆ  might be computed for blocks lasting several seconds before the results are 

averaged; in this case only ˆ  can be determined.  If within a diffuse source there is a strong 

monochromatic point source, then the phase offset to  can be determined by analyzing its 

contribution and that offset can then be used to interpret the remaining signal.  If such a point 
source resides within view of all antennas, then its use is straight forward.  Alternatively, each 
site can have two antennas, one of which is pointed to the common point source located 
elsewhere in the sky. 

 Another technique for resolving fringe ambiguities in very long baseline interferometers 
involves the use of very broad bandwidths.  Consider a source region that has hundreds or 
millions of fringes across its width, and assume we wish to determine on which fringe F a 
particular source sits.  Figure 5.2-18 illustrates the problem and the technique. 



264

Figure 5.2-18:  Fringe identification using broadband observations. 

The fringe pattern of Figure 5.2-18 has a period of D , where D is the interferometer baseline 
projected perpendicular to the line of sight to the source.  Therefore for each source the fringe 
phase relative to the phase origin is  = 2 F, where F( ) is the wavelength-dependent fringe 
number.  Since we can determine phase only modulo 2  at a single frequency, we need more 
observations.  For example, if we were to observe at all frequencies, we could readily determine 
the fringe position for each source of interest by extrapolating its observed phase to zero 
frequency.  In practice it suffices to observe the fringe spacing over single or multiple 
disconnected modest bandwidths, where these modest bandwidths are sufficient to determine the 
slope of phase as a function of frequency with accuracy sufficient to extrapolate  without 
ambiguity to zero frequency or to the next band in which phase is measured.  Accurate phase 
determinations at two bands simplify the task of extrapolation to a third band, and so on.  A 
modest number of bands spaced exponentially usually suffices to remove fringe ambiguity so the 
separations between two sources can be accurately determined, even if the absolute position may 
be somewhat uncertain because of relative drifts between the two local oscillators.  Clearly one 
must switch the interferometer from one frequency band to another across all necessary bands 
within the coherence time of the clock pair. 

 In those cases where only the magnitude of the aperture field autocorrelation function is 
desired, phase information and clock synchronization requirements can be discarded entirely, 
provided the source signal strength is strong.  Perhaps the first instrument employing this 
technique was that of Hanbury-Brown and Twiss in their visible-band optical interferometer at 
Narrabri, Australia.  This instrument used two large parabolic mirrors on moveable platforms 
which could be separated at distances of hundreds of meters along a circular track.  At the focus 
of each light bucket was a phototube with a bandwidth of ~1 GHz. 
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Figure 5.2-19:  Hanbury-Brown Twiss Interferometer 

In this system, often called a Hanbury-Brown Twiss interferometer, the detected 1-GHz 
bandwidth signals from the two phototubes are multiplied and integrated to yield an output 

which is proportional to the square of the field autocorrelation function 
2

E .  This 

relationship is easily derived by recalling the formula for the expected value of the product of 
four jointly gaussian random variables.  In this case, the two optical intputs, x and y, are first 
squared in the phototube because only power in the arriving waves is measured, and then low-
pass filtered by the finite response time of the phototube to produce the 1-GHz bandwidth signals 
which are then multiplied.  Averaging produces the expected value 

   
22 2E[xxyy] x  y 2xy   (5.2.13) 

where xy  is E  here.  That is, the output of the Hanbury-Brown Twiss interferometer is the 

square of the field autocorrelation function E .  Although we have lost the phase 

information in E , if the source is known to be an even function of position, then E  is real and 

the phase is known a priori to be zero.  In this case the source intensity distribution can be 
produced exactly, even though all phase information has been lost.  The fact that a system 
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lacking phase reference can nonetheless yield angular resolution of ~ /D may be surprising.  
Several simple ways of interpreting this situation are explained below. 

First, however, we should note the poor sensitivity of this configuration.  Because only the 
envelopes of the two signals are being correlated in the Hanbury-Twiss interferometer, there is a 
penalty in system sensitivity for the weak signal case where AR TT .  In this situation the 

ratio of the rms fluctuations in the output signal 
rmso  to the average value of the output voltage 

o  is proportional to 2
AR TT : 

   
W2T

T
v

v
2
A

2
R

o

rmso   (5.2.14) 

where W[Hz] is the bandwidth of the detector output.  In this case it is important to concentrate 
on the brightest sources and to use a fast cooled photomultiplier tube, a very large aperture, and a 
very long integration time .

 The output of the Hanbury-Brown Twiss interferometer 
2

E
 is related to the source 

angular brightness distribution 
2

E  as suggested by equation (5.2.15). 
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E)y,x(E

 (5.2.15) 

The top four variables in (5.2.15) correspond to the aperture field distribution )y,x(E  and its 

transformed representations in displacement space , and source-angle space .  The same 
transformations that link the first Fourier-pair of variables to the pair on the second line of 
(5.2.15) can be applied a second time to the second row so as to yield the third row.  That is, the 
squared magnitude of any complex quantity is the Fourier transform of the autocorrelation 
function of the Fourier transform of the original.  More particularly, the output of the Hanbury-

Brown Twiss interferometer 
2

E
 is the Fourier transform of the autocorrelation function 

2
E

R  of the angular plane wave expansion of the source, squared; that is, the ouput is 

the Fourier transform of the autocorrelation function of the source angular intensity distribution 
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I .  Thus, to the extent 
E

 is a real function, which is equivalent to the source angular 

intensity distribution I  being an even function of position, I  can be recovered exactly. 

Figure 5.2-20 and 5.2-21 suggest two ways to understand physically why the thermal radiation 
becomes increasingly decorrelated in directions separated by angles  larger than ~ D , where 
D is the diameter of the blackbody source.  We can consider the radiation traveling towards the 
antennas as originating from a combination of many point sources, such as g and h in Figure 5.2-
20.  The radiation from g and h superimpose at antenna a with an offset in time which differs by 
roughly 2  from that associated with the superposition of the same two rays at antenna b, at 
which point the signals a and b become decorrelated.  The separation angle  that produces 
decorrelation and a differential phase lag 2  at the central frequency is D .

Figure 5.2-20:  Decorrelation of source radiation propagating in different directions. 

 We can also arrive at a similar conclusion using a planewave expansion, as suggested in 
Figure 5.2-21.  If we imagine the source to be a hole in the sky behind which there is a thermal 
blackbody, then the shapes of the diffracted beam patterns propagating toward the two antennas 
a and b will be identical, but the signals associated with these patterns, one per planewave, will 
be completely uncorrelated.  Therefore the only correlation between signals arriving at a and b 
arise because of the finite beamwidth B  of the beams diffracted by the source aperture.  This 

beamwidth is ~ D .
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Figure 5.2-21:  Decorrelation of source-diffracted radiation propagating in different directions. 

The sources observed by Hanbury-Brown and Twiss were stars of diameter 10~ 10  meters and 
therefore B  was on the order of a milliarcsecond.  This also equals the angle L/R at the point of 
decorrelation, where R is the distance to the star, and L is the separation distance between the 
two antennas a and b at the point of decorrelation.  Thus decorrelation occurs when: 

   L R D (5.2.16)

Manipulating (5.2.16) yields: 

   sL D R   (5.2.17) 

where s  is the angular dimension of the source (radians) as seen by the observer. 

5.3 RADAR 

Radar systems deduce the range to objects, and perhaps their radial velocity and shape.  
Monostatic radar is the most common, which means that the same antenna is used for 
transmission and reception.  If the two antennas are located at different positions, it is called 
bistatic radar. If the image is constructed by coherently combining different radar echoes 
obtained while the radar antenna is moving relative to the source, or visa versa, it is called 
synthetic aperture radar (SAR).  That variant of SAR where the radar antenna is regarded as 
stationary and only the target moves is sometimes called inverse synthetic aperture radar
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(ISAR).  Since SAR images can preserve phase, it is possible to determine phase differences 
between consecutive images using Interferometric synthetic aperture radar (InSAR)  Discussion 
of SAR and ISAR is postponed to Section 5.4. 

 A simple characterization of the radar problem is provided by Figure 5.3-1. 

Figure 5.3-1:  Radar issues 

The target generally reflects the incident signals in directional patterns that may be complex, 
depending on the shape and electrical properties of the target.  If the target is a rigid body, then it 
can be characterized as having a position r , a velocity v , and an angular velocity vector .  In a 
bistatic configuration, it is important to know how the incident energy is scattered over all 4
steradians for any particular position of the target.  In the monostatic case, only the scattering 
cross-section  corresponding to retro-reflected radiation is of interest. 

The basic radar equation which quantifies the power received by a radar rP  in terms of the 

power transmitted tP  is given by (5.3.1), where tG  and tA  are the gain and effective area of the 

transmitting antenna, respectively, R is the distance to the target, and  is the target scattering 
cross-section (m2).

   
2

t
r t t t2 2 2

P GP G A P
44 R 4 R 4 R

 (5.3.1) 

The product of the first two factors PtGt/4 R2 corresponds to the flux density (Wm-2) at the 
target, while the product of the first three factors corresponds to the flux density reflected by the 
target and measured at the transmitting antenna.  As suggested in (5.3.1), the equation can be 
further simplified using the relationA = G 2/4 .  Note that the factor /4 R2 in (5.3.1) 
effectively defines the scattering cross-section  as the equivalent capture cross-section for a 
target that scatters the incident radiation isotropically. 
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Figure 5.3-2:  Corner reflector 

 It is very important to note that targets can have scattering cross-sections substantially larger 
than their physical size.  For example, a corner reflector composed of two metal plates at right 
angles and perpendicular to the plane of incidence reflect the power incident upon them in a 
narrow retro-reflected beam having a width of D~  radians, where D is the diameter of the 
retro-reflector.  Corner reflectors can be effective over nearly one steradian if they are composed 
of three flat sheets at right angles, forming a three-dimensional corner.  It is easy to show that the 
scattering cross-section  of a good retro-reflector can be approximately 4 D2/ 2 times larger 
than its physical cross-section. 

 It is also interesting to note that power received is proportional to the square of the gain 
G( ), and that a radar exhibits a narrower beamwidth than would the same antenna used in a 
passive mode.  Most important is the fact that the returned echo for an unresolved target is 
proportional to R-4, which severely limits the practical range of radars having modest power and 
antenna gain. 
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Figure 5.3-3:  Target scattering laws 

 The scattering cross-section of a target depends on the character of its surface, as suggested 
in Figure 5.3-3.  Six important types of surfaces are frequently encountered.  Specular surfaces
are flat and smooth on a scale of the wavelength, and preserve the plane-wave character of the 
incident wave upon reflection, where the angle of reflection equals the angle of incidence.  
Scintillating surfaces are similar but with surface deviations , where these indentations 
and protrusions have spatial extents much larger than a wavelength.  The resulting scattered 
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wave is generally planar, but with randomly positioned nulls.  Faceted surfaces are composed of 
specular surfaces linked to form a zigzag surface, where the facets are generally large compared 
to a wavelength and the angles of deflection are generally less than a radian.  Lambertian 
surfaces have a horizontal spatial scale much smaller than a wavelength and as a result the 
scattered radiation is more nearly isotropic and therefore in proportion to the projection angle 
from which it is viewed; that is, the reflected intensity is proportional to cos , where  is the 
angle between the surface normal and the viewer.  Bragg scattering results when the target 
surface is generally planar but modulated periodically so that the reflected signal tends to 
reinforce in some directions and cancel in others, as suggested in Figure 5.3-3e. 

Sub-surface inhomogeneities can take various forms.  For example, the dielectric constant )z(
can be a function of depth z, so that multiple reflected waves are produced which interfere 
constructively in some frequency bands and destructively in others, and thus assumes some 
spectral character.  Alternatively they may be introduced by rocks of one dielectric constant 
imbedded in a medium of another.  To the extent the rocks are small compared to a wavelength, 
the sub-surface scattering will take on a Lambertian character, and to the extent the rocks are 
large compared to a wavelength, they may assume a more faceted character. 

Figure 5.3-4:  Lunar scattering cross-section ( ,fo) as a function of pulse delay , as observed at 
r.f. frequency of . 

 Some targets exhibit combinations of these scattering processes.  For example, consider the 
target response of the moon when its entire surface is illuminated by an earth-based radar 
emitting an impulse of duration T(sec) and length cT meters, which is small compared to the 
lunar radius.  Figure 5.3-4 illustrates how the signal received at any instant comes from a narrow 
circular ring on the moon of depth cT/2, where the factor of two results because of the round-trip 
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path taken by the echo.  If the thickness of this ring is small compared to the depth of the target 
we say we have a deep target. 

 Because the moon is large, the pulse duration T can be made sufficiently short that useful 
range resolution is obtained, while still providing enough pulse width to permit Fourier analysis 
to detect doppler shifts introduced by lunar rotation, as suggested in Figure 5.3-5. 

Figure 5.3-5:  Doppler-shift zones observed by lunar radar. 

Because the moon is effectively rotating slightly with respect to observers on earth because of a 
small wobble, a small doppler shift f can be introduced in the echo, as illustrated. 

 A map of the lunar radar reflectivity can be obtained, as suggested in Figure 5.3-6, by 
dividing each returned radar pulse into different range bins corresponding to different delays, and 
then Fourier transforming each such sub-echo, thus dividing it into different doppler shifts. 
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Figure 5.3-6:  Range-doppler response for a pulse radar illuminating the moon. 

The first return in any pulse is associated with the lunar point D closest to the radar, and 
subsequent parts of the echo are associated with a range circle of steadily increasing radius, until 
the the limb of the moon is reached at A,C,B, beyond which no further echo is received.  For any 
particular range circle, doppler analysis, as suggested in Figure 5.3-5, can isolate the total power 
scattered by the points E illustrated in the figure which are associated with the given doppler 
band.  There is, unfortunately, a north-south ambiguity between echoes from the points E in the 
northern and southern hemispheres; their echo strengths are superimposed and can be 
disentangled only if the radar antenna beam illuminates one hemisphere in preference to the 
other.  The observed echo strength as a function of delay  and doppler offset f thus resembles a 
map of the moon, albeit folded over on itself at the equator. 

The figure suggests how the scattering cross-section ( ,f) corresponding to the point D is larger 
because this reflection typically has a large specular component.  By observing the angular width 
of this specular component, information about the slope distribution can be obtained for those 
specular facets with widths several times larger than the wavelength.  Craters or other features 
which strongly retro-reflect show up within the space ( ,f) as regions of enhanced reflectivity, as 
suggested in the figure.  The semicircular shape of this space ( ,f) where  is non-zero results 
because no delays  can be greater than those corresponding to the points A, B, and C, and for 
any particular range , the doppler width will be limited.  At the point D the maximum possible 
doppler offset f is zero.  The echo corresponding to the points E is also illustrated in the figure. 

 Simple considerations show that the lateral resolution of a range-doppler radar observing the 
moon is limited.  Consider the simple radar pulse illustrated in Figure 5.3-7. 
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Figure 5.3-7:  CW radar pulse 

The pulse consists of a sinusoid at frequency of  Hz truncated by a boxcar window of length T 

seconds; the amplitude of the sinusoid is proportional to )t(P .  The resulting received signal 

r(t) will be a slowly modulated sinusoid as suggested in (5.3.2). 

)t(mtcos)t(Pk)volts)(t(r o  (5.3.2) 

The received signal r(t) is proportional to the constant k, which represents the effects of antenna 
gain and other factors in the radar equation, plus receiver amplifier gains, etc.  The additive term 
m(t) corresponds to receiver noise, which is usually gaussian and white over the band of interest.  
This expression for a point target must be convolved with the distribution of the scattering cross-
section  with range  and/or doppler offset f.

Figure 5.3-8:  Matched filter receiver for CW pulsed radar 

 Estimating the scattering cross-section  of a point target and the delay  becomes a 
communications receiver design problem, where a matched filter receiver can yield optimum 
performance by testing every possible delay.  However, this bank of filters can be replaced by a 
single filter matched to the transmitted waveform.  This filter output can be scanned by the 
receiver for its maximum value, the amplitude and timing of which provides the desired cross-
section and range information.  Figure 5.3-8 illustrates the form of such an optimum receiver. 
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Consider the output y(t) from an optimum matched filter h(t), where h(t) is the time-inverted 
transmitted pulse.  The output y(t) is the convolution of the input signal with the filter response 
function h(t), and assumes the triangular form suggested in Figure 5.3-8.  The envelope of that 
response )t(R P  is defined as: 

   d
)0(P

)t(P
)P()t(R P  (5.3.3) 

where )(P  is the voltage envelope of the transmitted pulse, as suggested in Figure 5.3-7 and 

again in Figure 5.3-8.  More particularly, using (5.3.2) we obtain the filter output y(t): 

   
)0(P

tcos)t(P
)t(mtcos)t(P)t(y o

o  (5.3.4) 

where the ideal filter response h(t) is the matched filter response normalized by the transmitted 
signal voltage )0(P .

One way to detect the envelope of the filter output is to square the output and then low-pass filter 
it using the filter g(t), where this low pass filter has a time constant equal to several periods fo

-1

of the transmitted pulse.  The matched filter response to a point source has total duration 2T, 
where T is the duration of the transmitted pulse.  The output of the envelope detector z(t) is: 

)t(n)t(Rk)t(z 2
Po

2   (5.3.5) 

where o  is the scattering cross-section of the point source, R(t) is the envelope of the ideal 

point-source matched-filter response, and n(t) is the effective additive noise at the output.  For an 
ideal point target the response z(t) is given for this receiver in Figure 5.3-9, where this response 

)t(R2
P

 is the ambiguity function in delay. 

Figure 5.3-9:  Ambiguity function in delay for a pulsed CW radar 
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In this case the ambiguity function is the square of a triangle wave, and the output in the 
presence of multiple targets may or may not be the superposition of their corresponding 
ambiguity functions.  For example, if the targets are all stationary then their echoes will be 
coherent and interfere constructively or destructively, preventing superposition.  If the targets 
have different doppler shifts, then the echoes will add incoherently and the system response z(t) 
will be the superposition of the corresponding ambiguity functions, each with its own delay and 
amplitude corresponding to the target cross-section and range.  In this case where the target 
echoes add incoherently the expected value of the output is: 

   )t(nRk)t(zE 2
P

2  (5.3.6) 

This integral equation (5.3.6) can generally be solved for the scattering cross-section  as a 
function of range , but the range accuracy is limited by the width of the ambiguity function and 
the noise level.  If the detector is linear instead of quadratic, a slightly different ambiguity 
function results, having the triangular form of )t(R P  for boxcar CW pulse transmissions. 

 Optimum receiver design for radar signals is similar to that for communication signals.  In 
each case an ensemble of possible received waveforms might result, each corresponding to a 
different target, and our task is to identify the one with the maximum a posteriori probability.  A 
variation of the receiver architecture illustrated in Figure 5.3-8 can be constructed for analyzing 
signals where both doppler and range are of interest, as illustrated in Figure 5.3-10.  The received 
signal r(t) is amplified and then passed through several filter banks in parallel.  Their outputs, 
y(t), produce responses resembling the ambiguity function and feed a comparative peak detector 
that identifies the highest response in range/frequency as the best estimate for delay D and 
doppler shift f.

Figure 5.3-10:  Matched filter radar receiver for delay and Doppler estimation 
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An alternative form of the same receiver would insert square-law detectors operating on the 
output of each filter, together with low pass filters which produce ambiguity functions 
resembling those of Figure 5.3-9.  The matched filters in Figure 5.3-10 would take the form: 

   o 1 o 1h t, f f P( t) cos 2 f f t  (5.3.7) 

where P(-t) is the time inverted waveform of the transmitted pulse, as illustrated in (5.3.7). 
 In the case of joint detection of range and doppler it is useful to construct the range-doppler 
ambiguity function.  Consider the original transmitted CW pulse and its doppler-shifted 
counterpart illustrated in Figure 5.3-11. 

Figure 5.3-11:  Original and Doppler-shifted CW pulse 

The matched filter for the transmitted pulse for Figure 5.3-11 would yield a null response for the 
illustrated doppler-shifted waveform because it has been compressed one-half cycle over the 
pulse duration.  That is, by shifting f/f = (1/2 cycle)/(fT cycles) we have arrived at the first null 
in the matched filter response y( , f).  Therefore this first doppler null in matched filter response 
occurs when T2/1f  Hz.  The complete doppler ambiguity function for y(t) is illustrated in 
Figure 5.3-12, and suggests a doppler resolution of 1/2T Hz.  If we are certain the target is a 
point source, and the receiver noise level is low, we can determine the location of the peak and 
the doppler shift substantially more accurately than the widths of the range-doppler ambiguity 
function.
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Figure 5.3-12:  Doppler ambiguity function

 Figure 5.3-13 suggests the form of the combined range-doppler ambiguity function for a 
linear detector. 

Figure 5.3-13:  Range-doppler ambiguity function for a CW radar pulse 
of duration T 

For this pulse the half-power width in range is approximately T seconds, and the doppler width is 
approximately 1/2T Hz, so the time-frequency uncertainty for a CW pulse is f 1/ 2 ,
roughly consistent with the Heisenburg uncertainty principle.  It is also useful to talk about the 
time-bandwidth product of this CW radar pulse, which is BT  1, where B  1/T Hz. 

 The output z( , f) of the matched-filter range-doppler receiver of Figure 5.3-10 can 
generally be expressed as the convolution of the range-doppler ambiguity function R( , f) with 
the range-doppler target response function f,s .  In this case our resolution is limited 

largely by T in delay, and 1/2T in doppler resolution.  If we are certain we have a point source, 
then our delay and doppler resolution might approach ~0.01T and 1/100T, or better, provided the 
SNR is sufficiently high.  Using iterative interpretation techniques similarly high resolution is 
possible if we are certain we have only two point sources, provided they are not too close 
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together.  In practice, we are often not sufficiently certain of the source structure to achieve these 
levels of performance. 

 Modern radar systems often transmit pulses exhibiting time-bandwidth products that are 
much larger than one, for example, by using the sort of waveform illustrated in Figure 5.3-14. 

Figure 5.3-14:  Pseudo-random white noise radar pulse having a large time-bandwidth product 

Unlike the CW signal considered previously, such a pseudo-random noise signal can have almost 
arbitrarily large bandwidth B.  Pseudo-random noise (PRN) is any noise-like waveform that can 
be reproduced exactly, and only appears to be random.  It typically is implemented as a random 
binary sequence, such as that illustrated in Figure 5.3-15. 

Figure 5.3-15:  Binary pseudo-random noise sequence 

The bandwidth of the binary noise signal is roughly the reciprocal of a single pulse width, and 
since the pulse length T can be made arbitrarily large, so can the time-bandwidth product BT >> 
1.

 The ambiguity function z( , f) for BT >> 1 typically takes the form illustrated in Figure 
5.3-16.
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Figure 5.3-16:  Range-doppler ambiguity function for a large time-bandwidth product.

In general we try to utilize PRN sequences for which the ambiguity function in range is sharply 
peaked with  1/B seconds, and the doppler ambiguity f  1/T Hz.  Unfortunately, such 
ambiguity functions have random fluctuations which are non-zero outside the narrow peak, and 
extend to B and T before becoming zero.  For such a PRN pulse, the time bandwidth product 
is:

   1BT/1f   (5.3.8) 

In general, such large time-bandwidth functions are designed by trial and error rather than by any 
analytic means.  The criteria used to select PRN sequences may involve minimization of the rms 
response outside the central peak, or may simply limit the maximum sidelobe response.  Very 
often such waveforms take the simple form of a chirp, which is a sine wave that systematically 
drifts up or down in frequency over the pulse duration.  This simplicity often offers certain 
implementation advantages; the matched filter can be implemented using analog circuits. 

In general, such large time-bandwidth functions are designed by trial and error rather than by any 
analytic means.  The criteria used to select PRN sequences may involve minimization of the rms 
response outside the central peak, or may simply limit the maximum sidelobe response.  Very 
often such waveforms take the simple form of a chirp, which is a sine wave that systematically 
drifts up or down in frequency over the pulse duration.  This simplicity often offers certain 
implementation advantages; the matched filter can be implemented using analog circuits. 
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5.4 SYNTHETIC APERTURE RADAR 

5.4.1  Unfocused synthetic aperture radar

Synthetic aperture radar (SAR) exploits the relative movement between a radar antenna and 
a target field, and the coherent nature of the illuminating radar pulse, to synthesize apertures that 
can be substantially larger than the instantaneous physical aperture.  That is, because the 
transmitted radar pulses are coherent with one another, the signals received by the radar while in 
several different sequential positions can be coherently combined to achieve the same resolution 
as would a conventional multi-antenna interferometric array, such as those discussed in Section 
5.1.

Consider the typical fixed array of antennas illustrated in Figure 5.4-1, which can achieve a 
synthesized antenna beamwidth LB , where L is the overall length of the illustrated linear 
array.  A synthetic aperture radar system mounted on a moving airplane moving at some velocity 
v  can achieve comparable resolution by summing the signals received from multiple pulses as 
the airplane traverses a distance L in a line sufficiently straight that phase errors due to random 
aircraft position are not deleterious.  Before summing, each pulse is appropriately delayed to 
produce simultaneity and phase coherence. 

Figure 5.4-1:  Synthetic aperture equivalents of a fixed antenna array and a single moving 
antenna

 Let’s consider the system response to an ideal point reflector as a moving SAR platform 
passes by while emitting a series of brief CW pulses.  This configuration, the transmitted 
waveform, and the phase and amplitude of the received echo are sketched in Figure 5.4-2. 

LB
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Figure 5.4-2:  Phase and magnitude response for an ideal point reflector
observed by SAR 

 If the antenna on the moving platform is transmitting at right angles to the platform velocity 
vector, then the phase (t) of each pulse returned as the platform is abreast of the target will 
change very slowly, as suggested by the values of (t) in Figure 5.4-2.  The amplitude of the 

received signal E  decays as 2R1  where R is the target range; the received power decays as 
4R1 .  If we are in the far field of the synthesized antenna, so that 2L2R , then the 

received pulse power and phase variation (t) over the path L will be small compared to 2 .  In 
an unfocused SAR the window of data processed at any one time is of sufficiently short duration 
that this far-field approximation applies and the phase (t) associated with a single ideal point 
reflector is essentially constant. If the scattering cross-section of the target is a function of angle, 
then the phase and magnitude response for the received train of impulses may deviate from those 
illustrated in Figure 5.4-2.  The resulting sampled aperture field E(x) can be Fourier transformed 
to yield an image as shown later in (5.4.5). 

 The objective of SAR is to produce a 2-D or 3-D characterization of the source.  In the 3-D 
case we seek the source scattering cross-section s  as a function of azimuth, elevation, and 

range.  In general, the resolution in range is governed by the pulse time-bandwidth product, the 
resolution in azimuth is governed by the length L of the synthesized aperture, and the range in 
elevation (orthogonal to the radar velocity vector) is governed by the diameter of the radar 
antenna in elevation. 

 In the case illustrated in Figure 5.4-2 the window width L for which the data is processed 
would be limited by the phase errors over the aperture, because the point source in this case is 
too close to the transmitter.  Normally the antenna diameter D is chosen so that its antenna 
beamwidth BD  is sufficiently small that the magnitude of the response E  decays before 

the phase (x) drifts more than ~1 radian.  In this case the antenna diameter D controls the 
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effective aperture BL R R D  and the processing window used to derive the target cross-

section  at R and xo.  The geometry is suggested in Figure 5.4-3. 

Figure 5.4-3:  Geometry controlling angular resolution of unfocused SAR’s 

 This geometry leads to the important result that the maximum lateral resolution at the range 
of the target is approximately D, the diameter of the moving aperture antenna.  That is, the lateral 
(width) resolution w of the unfocused SAR at the range R of the target is approximately: 

   w R L R R D D   (5.4.1) 

The temptation to seek high spatial resolution by shrinking D is balanced by the resulting 
requirement for more transmitter power to maintain a given SNR and by the need to maintain 
phase coherence over longer flight distances L. 

 Figure 5.4-3 also presents the geometry that leads to the requirement that 2L2R  in 
order for the target to be in the far field of the synthesized aperture where the SAR is unfocused.  
This minimum range R of an unfocused SAR can be found by evaluating the phase discrepancy 
at the edge of the synthesized aperture.  Referring to the figure, the square of the maximum range 
is:

   R2RR2LR 2222  (5.4.2) 

Solving (5.4.2) for  yields: 

   16R8L2   (5.4.3) 

To set 16  implies a roundtrip phase error of 8 , or 45 .  Solving (5.4.3) for R yields the 
desired minimum range for an unfocused SAR: 
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   2L2R   (5.4.4) 

 The nature of the reconstructed image can be seen from: 

   
x

ˆw(x) E(x) E

ˆW( ) E( ) E( )

 (5.4.5) 

where w(x) is the sampled boxcar weighting function corresponding to the length L of the 
synthesized aperture, and )x(E  is the aperture field distribution; W( ) and )(E  are their 

respective Fourier transforms.  For the case where the aperture field distribution )x(E  is a 
constant and we ignore the fact that w(x) is sampled (because the sampling rate is very high), 
Figure 5.4-4 suggests the point target response function is a sinc function of angle x .

Figure 5.4-4:  Point target response function for an unfocused SAR 

 Because we wish to avoid multiple point source responses (aliasing) in the synthesized 
image we must have a sufficiently high pulse-repetition frequency (PRF), where PRF v L .
L  is the distance the aircraft moves between pulses and v is the aircraft velocity.  Aliased 
images will appear at angles that are multiples of L  and we wish these to lie beyond the first 

null of the antenna at D , or 2 D  to be conservative.  That is, we would like L 2 D , or 

L D 2 .  Thus we want PRF 2v D , but not so high as to introduce confusion, as explained 
below.

 If we process the unfocused SAR data separately for each range box R by Fourier 
transforming the corresponding data, we could obtain the synthesized radar image suggested in 
Figure 5.4-5. The contour plots in the figure correspond to the inferred scattering cross-section at 
that range and longitudinal position x.  The minimum range is determined by ignoring radar 

echoes received earlier, and is chosen in order to meet the requirement 2R 2L .  The 
maximum range is established by ignoring echoes arriving too late, and this boundary is usually 
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set by the fact that echoes beyond a certain range are usually too weak to be heard.  In this 

situation the strong range dependence 4
r RP  is beneficial.  The maximum range can also be 

limited by the antenna pattern if the radar is flying sufficiently high that it is looking down upon 
the target.  This geometry is elaborated further in Figure 5.4-6. 

Figure 5.4-5:  Representative synthesized SAR image 

Figure 5.4-6:  Determinants of swath width geometry for SAR 

Because we want to receive only one radar echo at a time, we choose our pulse repetition 
frequency such that: 

   xminmax v'LPRF1cRR2  (5.4.6) 

where 'L  is the distance the platform moves between successive pulses, and xv  is the velocity of 
the radar platform.  Unless Rmax is limited, tardy echoes could arrive so late that they overlap 
those from the following pulse.  We may approximate the range difference minmax RR  as 

yB o oR tan , where oR  and o  are the average values over the imaged swath, as 
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suggested in Figure 5.4-6.  By substituting this relation into (5.4.6) under the additional 
assumptions that L D 2  and the beam is circular so that 

y xB B D , it follows from 

(5.4.6) that: 

   B o o2 R sin c L v D 2v  (5.4.7) 

Therefore the distance the platform travels 'L  between pulses must be less than ~ D 2  in order 
to avoid aliasing in the reconstructed image. 

 Since the area A mapped per second is o~ vR sin , it follows from (5.4.7) that: 

   D 4A c    (5.4.8) 

Therefore to achieve good spatial resolution with an unfocused SAR, we would like to employ 
small values of D, but this makes it difficult to cover large swath areas rapidly.  Coverage rates 

greater than 2~ 1000 km sec  require D 1m , and perhaps more complex systems 

Figure 5.4-7:  Complex received phasor for one pixel and one SAR pulse, when the pixel 
contains multiple scattering centers 

 The raw synthesized image produced by an unfocused SAR typically exhibits considerable 
speckle, or random amplitude fluctuations from pixel to pixel.  This is because the inferred 
scattering cross-section at any particular point is deduced from the squared magnitude of a sum 
of phasors, one phasor per pulse.  Consider the case illustrated in Figure 5.4-7, where a single 
resolved SAR pixel contains many scattering centers, such as it might if ordinary terrain were 
being imaged.  The phasors associated with these scattering centers and a single pulse might add 
to produce a total phasor , as illustrated for a single pulse. 

In the synthesized image many such random phasors are superimposed, one per pulse j, to 
produce the final synthesized image, so that the total power associated with a single pixel in the 
final synthesized image can be represented as: 
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   ij

2 2
j t 2

pixel ijj
j i, j

P a e r  (5.4.9) 

where the subscript i refers to the scattering center within the pixel, and the index j refers to the 
pulse number in the set being superimposed.  Since the phase angles ij  are typically distributed 

uniformly over 2  radians, it follows that the sum of the real parts of the total phasor and the sum 
of the imaginary parts of the same phasor are individually gaussian random variables with zero 

mean and variance 2 .  The probability distribution of the magnitude squared of this sum of 
phasors is Laplacian, and is given by: 

   
22

pr 222
j 2

pj

1
p r p e

4
 (5.4.10) 

where p
2 is the variance of r2.  The distribution for p{r} is suggested in Figure 5.4-8. 

Figure 5.4-8:  Probability distribution for the SAR phasor magnitude 

For this probability distribution it follows that 

   2]r[E   (5.4.11) 

   2 2E r 2 2   (5.4.12) 

From these expressions we can show 
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Note that the form of the probability distribution is independent of the number of phasors being 
added.  As a result, in raw SAR images having full spatial resolution the ratio of the standard 
deviation p  of the phasor magnitude squared to the mean phasor intensity p  is approximately 

   p 2 3
0.53

p 2
  (5.4.14) 

This important result says that any full-resolution SAR image will be extremely grainy because 
the standard deviation of pixel echo strength is comparable to its mean value.  The standard 
solution to reducing this noise is simply to blur the image spatially.  The point is that when one 
sums larger number of phasors, the standard deviation does not decline with their number N, 
whereas the standard deviation relative to the mean does decline inversely with the square root of 
the number of real numbers averaged.  That is, if we average M2 pixels the ratio of (5.4.14) 
becomes 0.53/M. 

 Another way to average is to run multiple unfocused SAR’s in parallel.  One SAR might 
look slightly forward, one might look to the side, and one might look to the rear, as suggested by 
Figure 5.4-9.  This generally requires that the transmitting antenna be a multibeam phased array, 
although a mechanically steered solid aperture could be used.  Yet another approach is to have 
only one antenna system, but to operate in multiple bands, where each band yields an 
independent image.  Of course the same total bandwidth could alternatively be used to yield 
more range resolution and pixels, which then could be averaged spatially to achieve a 
comparable result. 

Figure 5.4-9:  Multi-look SAR configuration 

 It is clear from the foregoing analysis that the same SAR performance results whether the 
antenna is moving linearly with respect to the source, as might happen when imaging geological 
formations from an aircraft, or whether the antenna is stationary and the source flies by in a 
straight line, as might a satellite in orbit about the earth.  Less obvious is the fact that the target 
might follow an arbitrary known trajectory and rotate. 

L
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5.4.2  Focused SAR or Phase-focused SAR

 If the strip map imaged by SAR is within the near-field or Fresnel region of the synthesized 
aperture of length L, then a range-dependent phase correction must be applied before 
reconstructing the image at that range.  These corrections are unique to each point in the 
reconstructed image. 

 For example, consider a single point target that yields the phase history illustrated in Figure 
5.4-10.

Figure 5.4-10:  SAR point-target phase history; each dot corresponds the phase of a single 
received CW pulse 

When the moving platform is abreast of the target near the point of closest approach the phase of 
the received CW pulse (t) changes very slowly; otherwise the phase can move through 2  very 
rapidly.  If the physical aperture D is sufficiently large, pulses outside the constant-phase region 
are in the sidelobes of the physical antenna and therefore have negligible impact.  For example, it 
is easy to show that if the roundtrip phase error were 2  at the extreme edge of the synthesized 

aperture where x = L/2, then the minimum range oR  must be larger than 2D2   A more 

conservative metric for aperture phase error,  < /16, yields 2
oR 16D .  Since the phase 

errors associated with targets at each distance are known as a function of down-track aperture 
position x, the phase corrections necessary to produce constant phase prior to reconstruction of 
the image are known and can be employed. 

 It is important to note that by focusing the phase for each imaged point, the length L of the 
synthetic aperture can be increased substantially, and the spatial resolution in x can be less than 
D, provided that the finite aperture D is steered so as to observe the target as it passes by.  This 
can be accomplished by using a mechanically rotated antenna, or by using a phased array with 
either a single steered beam or multiple beams observing several directions simultaneously.  The 
limiting down-track resolution approaches  as the synthesized aperture L approaches the target 
range R.  The resolution in range remains approximately c/B, where c is the velocity of light and 
B is the pulse bandwidth. 
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 To approach these limiting resolutions for very long synthesized apertures, it may also be 
necessary to delay the pulse envelope as well as the phase.  That is, envelope delay corrections 
should be employ if the extra roundtrip pulse delay experienced at the ends of the aperture where 

2Lx  is a significant fraction of the pulse length (meters) of c/B. 


