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CHAPTER 6: ESTIMATION 

6.1 LINEAR ESTIMATION 

6.1.1  Introduction

 Most estimation problems involve an output vector Y that is to be determined from: 1) an 
observed input vector X of any length, and 2) apriori information about the relationship of X to 
Y.  Often the apriori information is training data consisting of a finite representative ensemble of 
vector pairs {X,Y}.  In some cases the vectors x and y form a time series with additional 
constraints relating successive vectors.  This chapter addresses two types of estimation problems:  
those where the statistical relationship is known and those where it must be deduced from limited 
observations.  The related topic of hypothesis testing was treated in the context of 
communications in Chapter 4.  Section 6.1 emphasizes linear estimation methods, while Section 
6.2 treats representative nonlinear techniques. 

 The three illustrative linear estimation problems treated in Section 6.1 involve: 1) a linear 
problem with a known relationship between input and output; this example involves reduction of 
the systematic blurring introduced in most imaging systems, 2) a similar problem but with 
known non-linear physics and non-jointly-Gaussian statistics; where the object is to remotely 
sense the 3-D state of a system like the terrestrial atmosphere from 2-D observations of 
microwave or optical spectra, and 3) a multiple regression problem where the physics and 
statistics are unknown and must be deduced from a given finite set of training observations, 
where this case is also often encountered in remote sensing problems.  Section 6.2 then reviews 
non-linear estimation techniques for similar problems. 

6.1.2  Linear Image Sharpening

 One classic problem typical of many “deblurring” or “image sharpening” applications is that 
of estimating the true sky brightness distribution B ST  as a function of the two-dimensional 

source angle S  (the overbar signifies a vector quantity).  The finite resolution antenna is pointed 

at angle A  at any instant, and the antenna response to radiation arriving from the source angle 

S  depends on the antenna gain in that direction, A SG .  If the radiation arriving from 

different angles is uncorrelated, then the linear relationship (3.1.13) between sky brightness and 
antenna temperature A AT  becomes: 
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where “*” signifies two-dimensional convolution.  This characterization of blurring is also 
relevant to video, audio, and other applications. 

 If we Fourier transform (6.1.2) from angular coordinates  into angular frequency 

coordinates radian/cycless  over a small solid angle of interest, we obtain an equation which 

can readily be solved for BT s : 
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where the Fourier relationship for antenna gain is: 
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 A simple example illustrates how the desired but unknown brightness distribution BT

can be estimated from the observed antenna temperature map AAT .  Consider a uniformly 

illuminated square antenna aperture of width D meters, as illustrated in Figure 6.1-1.  The 
antenna gain G  is proportional to the angular distribution of radiated power, which is related 

by an approximate Fourier transform (3.3.7) to the autocorrelation function ER of the 
electric field distribution in the aperture.  In this case the aperture illumination is assumed to be 
uniform and ER  then resembles a pyramid which sags at its four corners, as illustrated.

Figure 6.1-1:   Electric field autocorrelation function and gain for a square 
uniformly-illuminated aperture 
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Since the gain spectral characteristics sG  and field autocorrelation function ER  are both 

Fourier transforms of the antenna gain G , they both have the same pyramidal shape, which 

becomes zero beyond spatial offsets  of D/  or angular frequencies s greater than D/ .
Therefore we use the solution: 

   A
B

4 T s
T̂ s W s

G s
  (6.1.5) 

where the window function sW  avoids the singularity introduced at angular frequencies s  for 

which the gain is zero; the carot over a symbol indicates an estimate.  That is, sW  is zero when 

sG  is zero, and unity otherwise; in this case (6.1.5) is called the principal solution for the 
antenna deconvolution or “blurring” problem. 

 The nature of the principal solution is well illustrated by the example of a point source for 
which AT .  In this case sTA  = unity, and therefore our estimated brightness 

temperature angular spectrum sWsT̂B , so that our estimated brightness temperature 

distribution BT̂  is simply a two-dimensional sinc function, as illustrated in Figure 6.1-2.  

Note that the first zero for the retrieved brightness distribution occurs at angle /2D, and that the 
solution BT̂  becomes negative at some angles.  Obviously we can reduce the solution error by 

setting every negative estimate of BT̂  to zero (a non-linear operation). 

Figure 6.1-2 :  Brightness temperature principal solution for a point source 

 A more serious problem with the principal solution arises because the observations are 
typically corrupted by additive noise: 
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   A AT̂ s T s N s   (6.1.6) 

For angular frequencies s  where the signal-to-noise ratio is good, the noise perturbs the solution 

only slightly.  However, for angular frequencies s approaching D/  where both sG  and sTA

approach zero, the noise sN  typically has been amplified by sG4  to unacceptably high 
levels, destroying the utility of the solution, as suggested in Figure 6.1-3. 

Figure 6.1-3:   Point-source principal solution illustrating noise amplification 

One remedy for excessively amplified noise is to optimize the weighting function W s , for 
example, by minimizing: 

   
o

2

B A
W s

ˆE T s T s N s     Q
G s

 (6.1.7) 

By setting the derivative Q/ W = 0 and solving for the optimum weighting function, we obtain: 
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If we make the reasonable assumption that the antenna temperature and receiver noise 

contributions are uncorrelated, i.e. AE T N 0 , then: 
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where S and N are defined as the signal and noise power, respectively, and the weighting 
SN11  has broad utility. 

In this case the boxcar form of the principal solution weighting function W s  is modified; it 
tapers instead gently to zero near D/  where the signal-to-noise ratio deteriorates.  For example, 
(6.1.9) suggests that at angular frequencies where the expected values of the noise and target 
powers are equal, the optimum weighting function equals 0.5.  By apodizing the weighting 
function in this way the restored image is blurred but has lower sidelobes, an effect which may 
be desired even without considering the effects of noise. 

 The solution represented by (6.1.5) and (6.1.9) can be used for restoration of convolutionally 
blurred images of all types.  For example, photographs, video images, radar images, filtered 
speech or music, and many other signal types can be restored in this simple fashion, provided the 
signal-to-noise ratio is acceptable at the frequencies of interest.  A more difficult estimation 
problem results when the blurring function G of (6.1.1) is different for every A  or portion of 
the observed signal, and where the blurring function may depend to some degree on the image 
itself.  This is the case treated in Section 6.1.3. 

6.1.3  Remote Sensing and Variable Blurring

 An important problem which illustrates variable or data-dependent blurring functions is 3-D 
remote sensing, where an antenna or optimal sensor observes the brightness temperature (power 
spectrum) emitted by a deep medium where the parameter of interest, temperature for example, 
impacts the observation to a degree which depends on both depth in the medium and the 
wavelength which is observed.  This dependence on depth is suggested by the equation of 
radiative transfer in the long wavelength limit (Rayleigh-Jeans approximation): 
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which corresponds to the simple geometry illustrated in Figure 6.1-4, and follows from (2.1.34).  
The optical depth (z) is defined as the integral of the absorption coefficient (z)(neper/meter) 
between observer and the depth z of interest: 

   
L

z

dz)z()z(   (6.1.11) 

where we have defined o  as the maximum optical depth corresponding to z = 0. 
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Figure 6.1-4:   Slab geometry for characterizing the equation of radiative transfer 

 In general, the contribution from the surface attenuated by the overlying atmosphere, 
o

Bo
T e , includes contributions from the down-welling radiation reflected from the surface, 

which typically has reflectivity R.  In this case four contributions to the observed brightness 
temperature can be identified, as suggested in Figure 6.1-5. 

Figure 6.1-5:   Geometry of observed radiation, including reflected components 

 The first term (1) suggested in Figure 6.1-5 corresponds to the sky brightness sT , which is 

reduced by the surface reflectivity R (R  1) and attenuated twice by the atmosphere o2e .
Term (2) corresponds to radiation which is emitted downward by the atmosphere and then 
reflected from the surface.  Term (3) is proportional to the ground temperature GT  times the 

surface emissivity  (  < 1) attenuated once by the atmosphere oe , while term (4) 
corresponds to the direct emission by the atmosphere.  That is: 
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where the four terms in (6.1.12) are, in sequence, the four terms suggested graphically in Figure 
6.1-5.  In the limit where the atmosphere becomes opaque and unityo , (6.1.12) reduces to 

the fourth term alone, which is equivalent to the second term on the right-hand side of (6.1.10).  
For specular surfaces, which are smooth and do not scatter, the surface reflectivity R = 1 - ,
where  is the corresponding specular emissivity in the same direction as the incident ray. 

 To use linear estimation techniques it is useful to put the equation of radiative transfer 
(6.1.12) into a simpler linear form.  For the high-atmospheric-opacity case, (6.1.12) can be 
approximated as: 

   
L

0
oB dz)z(T,f,zW)z(TT)f(T  (6.1.13) 

where the first three terms of (6.1.12) have been combined into an equivalent brightness 
temperature oT .  In general, those terms that combined to form the temperature weighting 

function W(z,f,T(z)) in (6.1.13) have a weak dependence on that temperature profile T(z) that we 
are trying to estimate; W(z,f) is thus a data-dependent blurring function.  To reduce the effects of 
this dependence it is sometimes useful to linearize about a presumed operating point To(z) for 
which there is a local incremental weighting function:
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In this case (6.1.13) becomes: 

   dz)z(T,f,zW)z(T)z(TT)f(T o

L

0
ooB  (6.1.15) 

Equations (6.1.13) and (6.1.15) both define linear relationships between the observed brightness 
temperature spectrum )f(TB  and the unknown T(z) that we hope to retrieve (the retrieval
problem.)  This problem involves retrieving the unknown function TB(f) from a set of scalars, 
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each being the integral of the unknown over a weighting function unique to each observation.  
This problem statement is quite general and applicable to a wide variety of estimation problems. 

 It is clear that if the observations consist of a finite number of spectral samples, solutions to 
(6.1.13) or (6.1.15) are not unique if the number of degrees of freedom in T(z) exceeds the 
number N of independent spectral samples.  This is often the case when retrieving temperature 
profiles, and for many other estimation problems.  In any event, N generally differs from the 
number of degrees of freedom in the ensemble of possible temperature profiles T(z), and in their 
corresponding brightness temperature spectrum )f(TB .

 First consider the nature of blurring in depth z for the case where the temperature profile 
T(z) is revealed by its resulting brightness spectrum.  This variable blurring is characterized by 
the weighting functions W(z,f) of (6.1.13) and (6.1.15).  These weighting functions are 
determined by the atmospheric absorption coefficient (f,P,T).  We shall neglect the weak 
dependence of  on temperature T in this discussion, and consider the dependence on pressure P 
to be dominated by pressure broadening, as explained below. 

 The dominant atmospheric absorption lines at microwave frequencies are the isolated water 
vapor resonances near 22.235 and 183.75 GHz, the isolated oxygen (O2) absorption line near 
118.3 GHz, and the cluster of oxygen lines 50-70 GHz.  Each of these lines can be modeled 
classically as being associated with a rotating molecule with a permanent electric or magnetic 
dipole moment, as discussed in Section 3.4.  The frequency spectrum of these classical rotating 
dipole moments is a series of impulses each associated with a different quantum state of the 
molecule.  These rotations and sinusoids are randomly interrupted and phase shifted by every 
molecular collision, yielding pressure broadened spectral lines with linewidths of 
approximately proportional to the number of significant collisions per second.  These line shapes 
can be computed by taking the Fourier transform of a sinusoid with poisson-distributed phase-
shift events randomly distributed over 2 .

The collision frequency and linewidth for a trace gas are proportional to pressure P if the 

trace gas has a small constant mixing ratio, where mixing ratio is defined as the fraction of the 

molecules associated with the spectral line of interest.  This proportionality constant depends on 

which two molecular species are colliding.  As suggested in Figure 6.1-6, the area under an 

absorption line is proportional to the number of absorbing molecules per meter. 
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Figure 6.1-6:  Pressure broadened spectral line for pressure P 

 Both the second and the fourth terms of (6.1.12) contribute to the shape of the weighting 
function W(z,f), which characterizes the relationship between the unknown T(z) and the 
observed TB(f), and is defined by (6.1.13).  For simplicity, if we assume the surface reflectivity R 
= 0, then the second term of (6.1.12), associated with the reflected downwelling radiation, 
approaches zero and: 
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This definition of weighting function yields the forms suggested in Figure 6.1-7 when the 
observer is above the atmosphere.  In this case W(f,z) approaches zero, first as z  because 
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Figure 6.1-7:   Absorption coefficients (z) and weighting functions W(z,f) for atmospheric 
temperature profiles observed from space 

Because both the spectral linewidth f and the spectral line area are proportional to pressure P, 
the peak absorption coefficient (z) = o is independent of altitude up to those altitudes where 
the linewidth becomes roughly constant because it is so narrow that it is dominated instead by 
Doppler broadening and spontaneous emission.  Above that altitude the peak absorption 
coefficient of  and spectral line area decrease with pressure, as suggested in Figure 6.1-7 for 

off , and W(f,z) approaches zero.  At any frequency f the absorption coefficient (m-1)

approaches its peak o  for pressures sufficiently great that the linewidth f substantially 

exceeds the frequency difference off .  At still lower altitudes the exponential factor in 

(6.1.16) begins to dominate so that W(z,f) reaches a peak and then diminishes rapidly, as 
illustrated in Figure 6.1-7.  The shape and width of the weighting function with altitude are 
therefore similar for all frequencies, and W is simply translated towards lower altitudes for 
frequencies increasingly removed from the center of the resonance.  The peak of the weighting 

function occurs for optical depth  near unity, where 
L

1z
f f ,z ' dz ' .  The width of W in 

altitude typically ranges between one and two pressure scale heights, depending in part on the 
mixing ratio and temperature dependence of the absorption coefficient; the pressure scale height 
for the troposphere is approximately 8 km. 

 The same expression (6.1.16) yields a different altitude dependence for weighting functions 
W(z,f) obtained when the observer is on the terrestrial surface looking upwards, as suggested in 
Figure 6.1-8.  In this case (z) is unchanged, but both factors of (6.1.16), namely (z) and the 
exponential, decrease with altitude as does W(f,z).  This decay rate is fastest for the resonant 
frequency of  where the absorption coefficient is greatest.  These weighting functions roughly 

resemble decaying exponentials which, in the limit of low absorption coefficients, decay very 
slowly with altitude.  For this up-looking geometry we can deduce temperature profiles with 
much greater accuracy very close to the observer, and with decreasing accuracy further away.  
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This is in contrast to the altitude independence of the weighting function shape for satellite-based 
observations, as illustrated in Figure 6.1 7 .

Figure 6.1-8:  Atmospheric absorption coefficients (z)(m-1) temperature weighting functions W 
for upward viewing sensors 

 Because the mixing ratio of oxygen in the atmosphere is nearly constant to altitudes 
exceeding 100 km, W(z,f) is largely known and spectral observations in its absorption bands 

yield nearly linear relationships between the temperature profile to be retrieved and the 
observations, whether the instrument views zenith or nadir. Since surface pressure varies, p(z) is 
generally used instead of z as the coordinate; i.e., we use W(f,p) to retrieve T(p).  A much more 
non-linear retrieval problem results when the altitude distribution of atmospheric constituents 

with variable mixing ratios are to be interpreted using spectral observations near their 
resonances.  Near frequencies where such resonances dominate the absorption, (6.1.13) can be 

approximated by: 
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where the weighting function )f,z(W  is the composition weighting function and )f,z(W  is 

the incremental composition weighting function relative to a nominal mixing ratio profile )z(o .

The retrieval problem posed by (6.1.17) is quite non-linear because the absorption coefficient 
(z) and weighting function W(z,f) are strong functions of the unknown composition density 
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(z).  In fact, the problem is singular if T(z) is constant, because the observed spectrum is then 
independent of the composition profile.  As before, it can be helpful to use a priori statistics for 
(T(z), (z)) and incremental weighting functions W p(z,f) relative to a moderately accurately 
known reference profile )z(o .

6.1.4  Linear Least-Squares Estimates

 Whether we are addressing nearly linear or highly non-linear problems, such as the 
moderately linear temperature profile retrieval problem of (6.1.13) or the much more non-linear 
composition profile retrieval problem posed by (6.1.17), we may nonetheless use linear retrieval
techniques, although with varying degrees of success.  In fact, such linear techniques are 
frequently used for most estimation problems because of their simplicity and widely understood 
character.  Perhaps the most widely used estimation technique is linear regression or multiple 

regression, for which the estimated parameter vector p̂  is linearly related to the observed data 

vector d  by the determination matrix D : 

   dDp̂    (6.1.18) 

The data vector often includes a constant as one element.  For example, we may define the data 
vector as: 

   N1 d,...,d,1d   (6.1.19) 

where we have N observations, perhaps corresponding to N spectral channels. 

 Multiple regression employs that D  which minimizes the mean square error of the estimate, 

where the error for a single estimate is pp̂ .  To derive D  we may differentiate that mean 

square error with respect to ijD  and set it to zero.  That is: 
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where iD  is the thi  row of D .  Therefore: 
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In terms of the data correlation matrix, 
t

dC E d d , (6.1.21) becomes: 

   
t t t
dC D E d p   (6.1.22) 

If the data correlation matrix dC  is not singular, then we may solve for the optimum 
determination matrix: 

   
t 1 t

dD C E d p   (6.1.23) 

 Although D  yields the minimum-square-error for a linear solution having the form (6.1.18), 
a linear estimator is optimum only under certain special assumptions:  1) the physics of the 
problem is linear such that: 

   npMd   (6.1.24) 

where the true parameter vector p  is related to the data by the matrix M , and the data is 

perturbed only by additive jointly-gaussian noise n , and 2) the parameter vector p  is a jointly 
Gaussian process characterized by the probability of distribution: 
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where the parameter correlation matrix is non-singular and is defined as: 

   
tt

mpmp  E    (6.1.26) 

and where m  is the expected or mean value of p . 
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 Linear regression in both linear and non-linear situations can also be understood in a 
graphical context.  Consider the simple situation where a scalar parameter p is to be estimated 
based on the noisy scalar measurement d, so that: 

   11 12 1p̂ D D
d

  (6.1.27) 

This is represented graphically in Figure 6.1-9, where the optimum estimator is represented by 
the regression line which has slope 12D  and an intercept on the parameter axis of 11D .

Figure 6.1-9:  One-dimensional linear regression 

 If two scalar parameters are available to estimate p̂ , then the solution becomes: 
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1DDDp̂   (6.1.28) 

which can be represented graphically as a regression plane, as suggested in Figure 6.1-10.  This 
representation can obviously be extended to arbitrarily high dimensions, but these are more 
difficult to represent graphically. 
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Figure 6.1-10:  Two dimensional regression 

 Often the linear regression (6.1.27) is expressed instead only in terms of 12D  and the mean 

values of the parameter and the data, < p > and < d >, so that ddDpp̂ 12 , as suggested 

in Figure 6.1-11. 

Figure 6.1-11:  Linear regression with means segregated

 It is shown below that linear regression estimates extract information in two ways:  from the 
physics of the sensor via weighting functions, and from “uncovered” information to which the 
instrument is blind but which is correlated with information the instrument does see.  A third 
category of information is “hidden” and is both unseen by the instrument and uncorrelated with 
any observable information; the hidden information is lost.  If the statistical relevance of the data 

used to derive the determination matrix D  is considered marginal, then it is often useful to 
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discount this information accordingly.  These two sources of information provided by physics 
and statistics can be separated, as follows. 

 To understand the nature of the information provided by the instrument without using 
statistics, consider the special case of noiseless data and linear physics where: 

   TWd    (6.1.29) 

where the data vector d  is that of (6.1.19) and the parameter vector, for example, is the 

temperature profile T . W  is the weighting function matrix and iW  is the thi  row of W .  It is 
shown below that if: 

   
N

1i
ii WaT   (6.1.30) 

and W  is not singular, then 

   TdDT̂   (6.1.31) 

That is, if the unknown parameter vector is a linear combination of the weighting functions and 
the noise is zero, then that unknown vector can be retrieved exactly if the weighting function 

matrix W  is not singular. 

 To prove (6.1.31) we may begin by using the Gram-Schmidt procedure to define an 
orthonormal set of basis functions )h(i  that characterizes the weighting functions: 

   

1 11 1
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 (6.1.32) 

where:
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308

Both i  and ijb  are known apriori if we restrict ourselves to the special case where the 

parameter vector T(h) is a linear combination of the weighting functions; then: 

   
N

1i
ii )h(Wk)h(T   (6.1.34) 

   
0

jj dh)h(W)h(Td   (6.1.35) 

Substituting (6.1.34) into (6.1.35) yields: 
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Therefore;

   kQd    (6.1.37) 

and we may solve for k  exactly if the known square matrix Q  is non-singular.  The exact 

parameter vector T(h) can then be retrieved by substituting the solution for k  from (6.1.37) into 
(6.1.34).

 It is useful to combine (6.1.34) with the solution to (6.1.37) to yield: 

   dDdQWdQWkWT
11

 (6.1.38) 

where we define the resulting D  as the minimum information solution, for which: 

   
1

QWD   (6.1.39) 

The minimum information solution is therefore exact for the noiseless case where the unknown 
parameter vector T  is any linear combination of the weighting functions, so the claim is proved. 
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 One of the principal benefits of linear regression is that additional information is extracted 
from apriori statistics.  By virtue of (6.1.35) an instrument yields no response, or is “blind”, to 
any component of the parameter vector T(h) which is orthogonal to the space spanned by the 
available set of weighting functions )h(Wj , which is the space spanned by )h(i  for 1  i  N, 

where N is the number of weighting functions.  In general, the parameter vector T(h) is the sum 
of components which are “seen” by the instrument plus all hidden components: 

   
1Ni

ii
N

1i
ii )h(a)h(Wk)h(T  (6.1.40) 

 Consider the extreme case where )h(1  is always accompanied by 0.5 )h(1N .  Then the 

minimum information solution could be improved using: 

   
N

2i
ii1N11 a5.0a)h(T̂  (6.1.41) 

The factor 0.5 would shrink to the degree that )h(1  became decorrelated with )h(1N .  By 

extension, the multiple regression estimator becomes: 

   
1Nj

jij
i

1
i aQWD wheredDT̂  (6.1.42) 

The first term in the expression for iD  is the minimum information solution and the second term 
is the uncovered information which we might define as the function i .  Thus the retrieval can 

be drawn only from the space spanned by N1N1 ,...;,... .  That is, the solution space can be 

spanned by 2N functions, but because of the fixed relationship between i  and i , the 
dimensionality remains N.  Thus N channels contribute N orthogonal basis functions to the 
minimum-information solution, plus N more orthogonal basis functions which are statistically 
correlated with the first N.  As N increases, the fraction of the hidden space which is spanned by 

)N,...,1i(i  and “uncovered” by statistics is therefore likely to increase, even as the hidden 
space shrinks.  In general, the apriori variance equals the sum of the observed, uncovered, and 
lost variance (lost due to noise and decorrelation). 

 As an example of the advantages of having more independent observations when statistics 
are used, consider eight channels of the AMSU atmospheric temperature sounding instrument 
versus its four-channel MSU predecessor.  Both these instruments are passive microwave 
spectrometers in earth orbit sounding atmospheric temperature profiles with ~10 km weighting 
functions peaking at altitudes ranging from 3 to 26 km.  Figure 6.1-12 illustrates how the total 
apriori variance in the ensemble of temperature profiles studied is divided between the variances 
seen, uncovered, and lost by these two instruments.  The sum of these three components is 
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always the same and represents the sum of the a priori variances for the 15 levels in the 
atmosphere used between 0 and 30 km; this total over the 15 levels was 1222 K2 for a mid-
latitude ensemble, and 184 K2 for a tropical ensemble.  Note that for both 55  and nadir 
incidence angles the ratio between lost and uncovered power for MSU is approximately 0.7.  
Although AMSU observes directly with the minimum information solution a much larger 
fraction of the total variance, roughly 90 percent, nonetheless the fraction of the variance 
uncovered by statistics is now greater than for MSU and the ratio between lost and uncovered 
power is only ~0.4. 

Figure 6.1-12 :  Relative importance of physics and statistics in recovering information in 
multiple regression; MSU and AMSU employ 4 and 8 channels, respectively. 

That is, by using more channels, statistics was able to recover a larger fraction of that variance 
which was unobservable by the instrument.  The same significant advantage of using more 
channels was even more evident in the tropical example. 
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6.1.5 Principal Component Analysis

 Unfortunately multiple regression yields inferior results when the number of training 

samples from which the determination matrix D  is derived is too limited.  Sometimes this limit 
is imposed by economics and sometimes by a desire to use only recent or nearby training data 
when estimating the next retrievals.  Fortunately a powerful technique can often significantly 
reduce these errors due to limited training samples.  This method, sometimes called principal 
component regression (PCR), filters the data vectors before performing the regression, where this 
filtering is performed by determining a limited number of principal components, (PC’s) which 
are equivalent to the eigenvectors in the Karhunen-Loeve transform (KLT), or to empirical 
orthogonal functions (EOF).  The orthonormal basis functions for the KLT are the columns of a 

square matrix K  and are the eigenvectors of the data correlation matrix ddC , where: 

   
t

dd dd EC   (6.1.43) 

The first eigenfunction 1iK  is that which most closely represents the ensemble of possible data 

vectors, and therefore typically resembles the ensemble average of d .  The second eigenvector 

2iK  is that function which most effectively reduces the residual variance over the ensemble, 

given the amplitude of the first eigenvector.  That is, the KLT matrix K  transforms the data 
vector to a new vector: 

   
i j ij i

d K d

E d ' d '
  (6.1.44) 

where i  are the eigenvalues of the matrix ddC  arranged in declining order.  Equivalently: 

   K

0

0

KC

n

2

1t
dd   (6.1.45) 

Principal component analysis (PCA) can sometimes be improved significantly by reducing 
the effects of additive noise when that noise differs significantly from variable to variable.  
Consider the generalization of the noiseless case (6.1.29) to the case where there is additive 
gaussian noise so that the available data vectors can be represented as: 

   nGTWd
21

  (6.1.46) 
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where W  is the known mixing matrix and T  is the parameter vector arising from a stochastic 

process characterized by a covariance matrix of order p.  G  is the unknown diagonal noise 
covariance matrix and the noise vector n  is assumed to be gaussian with zero mean and to have 
a correlation matrix which is the identity matrix of order m.  It can be shown that if the data 
vector for which PCA is to be performed is first normalized to yield  

   dGd
21

na   (6.1.47) 

then the resulting analysis is more faithful to the underlying process; nad  is called the noise-
adjusted data.  The variance of the additive noise in noise-adjusted data is identical across all 
variables.  Without noise adjustment PCA tends to emphasize the influence of parameters with 
larger noise vectors; this problem is more severe when the data set used for PCA is limited in 
size so that the noise contributions cannot be reduced by averaging.  The resulting principal 
components for the data set nad  are called noise adjusted principal components (NAPC).

 Thus an important way to improve multiple regression estimators (6.1.18) and (6.1.23), is to 

replace d  with nad  when computing 1
dC  and 

t
pdE  in (6.1.23). 

 These regressions can be improved still further by using principal components regression 
(PCR) in noisy circumstances when the training data set is limited.  PCR uses only a subset of 
the PC’s d  (6.1.44) to perform the regressions, the lower order terms being too noisy.  Various 

methods exist for determining how many elements m of d  should be retained, but this number 

m generally does not exceed the rank of the noise-free data vector d .  One approach to 
determining this cut-off m is to employ a scree plot of the logarithms of the eigenvalues i

versus i.  These logarithms typically decline steeply with i until they approach an asymptote 
representing the noise floor of the ensemble; values of i corresponding to this floor contribute 
primarily noise and generally should not be included in PCR. 

 Methods approaching NAPC in performance and generally exceeding that of PCR have 

been developed for cases where the signal order (rank of W  in (6.1.45)) and noise variances G
are unknown.  These include blind-adjusted principal components (BAPC) and blind principal 
component regression (BPCR).  This approach iteratively estimates the order of the random 
process and then the noise variances.  Improvements over PCR are greatest when the 1) number 
of variables in d  is large 2) the training set is limited, and 3) the noise on the various data 
elements varies substantially in an unknown way.  This method has been described by Lee and 
Staelin (Iterative Signal-Order and Noise Estimation for Multivariate Data, Electronics Letters,
37, 2, pp 134-5, January 18, 2001) and Lee (PhD thesis, MIT, EECS, March 2000). 
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6.2 NON-LINEAR ESTIMATION 

6.2.1  Origins of Non-linearity

Non-linear estimation techniques are generally superior to linear methods when the 

relationship between the observed and desired parameters is non-linear, or when the statistics 

characterizing the problem are non-jointly-gaussian.  A simple illustration of the superiority of 

non-linear estimators is provided in Figure 6.2-1, which characterizes the non-linear physical 

relationship between the desired parameter p and the available data d in terms of a scatter 

diagram representing the outcomes of multiple experiments. 

D2 slope

d

data

best fit,
"linear regression" 

p
parameter

Optimum  
estimator 

D1

p(d)^

P{p}

0
p

probability
distribution

a)

b)

Figure 6.2-1:  a) Best-fit linear regression line for a finite set of training data characterizing a 

non-linear physical relationship between the desired parameter p and observed data d; b)

probability distribution P(p) characterizing the training set 

The linear regression best fit is given by: 



314

   
d

1
DDp̂ 21   (6.2.1) 

where the scalars 1D  and 2D  represent the baseline intercept and the slope of the best-fit linear 
regression, respectfully.  It is clear from the figure that the optimum estimator is a curved line, as 
illustrated, rather than the linear regression.  It is also clear that the probability distribution 
applicable when the measurement is made should be similar to that of the training data, which is 
that finite set of data used when the best-fit linear regression was computed.  If the probability 
distribution of the training data differs from that of a test ensemble of data, the test estimates will 
be biased accordingly. 

 A simple illustration of how non-gaussian statistics can lead to an optimum non-linear 
estimator is shown in Figure 6.2-2. 

Figure 6.2-2:  a)  Best linear and non-linear estimator for a linear, but non-gaussian set of 
training data, b)  MAP and MSE estimates for a given observation Ad

The physics illustrated by the training set of data points illustrated in Figure 6.2-2 is linear but 
non-gaussian, which can result in negative values for p being estimated for this training set, even 
though negative values of p never occur.  A non-linear estimator can avoid this problem, as 
illustrated.  Figure 6.2-2b shows the a posteriori probability distribution AdpP .  The maximum 

a posteriori probability “MAP” estimator, by definition, selects the maximum point on this 
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distribution, which is at p = 0 here.  The minimum-square-error estimator Adp̂  is located near 

the center of gravity of the probability distribution and minimizes the mean square error given 

Ad .  To the extent a smooth probability distribution AdpP  can be defined for the training set, 

the MSE non-linear estimator is easily found.  The MAP estimator would approximate the best 
linear estimator for larger values of p, and would be pinned at 0p̂  only when p  0.  Note that 
this MSE estimator is non-linear because the statistics are non-gaussian, even though the physics 
itself is linear. 

 Non-linear estimators can be constructed in many ways.  They might be simple polynomials, 
spline functions, trigonometric functions, or the outputs of neural networks.  Recursive linear 
estimators can also be employed, as described in Section 6.2.3. 

6.2.2  Perfect Linear Estimators for Certain Non-linear Problems

There exists certain non-linear problems for which linear estimators can be used with perfection.  
Consider the case where a single parameter p is to be estimated based on two observed pieces of 
data, 1d  and 2d , where 

   2
21o1 papaad   (6.2.1) 

   2
21o2 pbpbbd   (6.2.2) 

For this example we assume the data is noiseless.  It follows from (6.2.2.) and (6.2.1) that 

   21o2
2 bpbbdp   (6.2.3) 

   221o21o221o1 dcpccbpbbdapaad  (6.2.4) 

Note that (6.2.4) defines a plane in the three-dimensional space 21 d,d,p .  This plane defines a 
perfect solution 

   1221o cdcdcpp̂   (6.2.5) 

Where the constant 1c  must be non-zero and is  

   2 1
1 1

2

a b
c a

b
  (6.2.6) 

Thus a linear estimator yields a perfect answer even though the relationship between the 
unknown parameter p and the two observed data points 1d  and 2d  is non-linear.  The graphical 
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representation in Figure 6.2-3 suggests how this might be so.  Figure 6.2-3 illustrates the case 
where the non-linear relationship between p and 1d  effectively cancels the non-linearities in the 

relationship between p and 2d  so as to produce a net dependency 21 d,dp  that is non-linear in 

one dimension but lies wholly within the linear plane 21 d,dp̂ .

Figure 6.2-3: Linear-relationship plane for a non-linear estimation problem 

 This first example involved two observations 1d  and 2d , and second-order polynomials in 

p, as defined in (6.2.1) and (6.2.2).  This example can be generalized to thn -order non-
linearities.  Let: 
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 (6.2.7) 

Where n21 d,...,d,d are observed noise-free data that are related to p by thn -order polynomials 
and all aij are known.  Note that the number n of independent observations for the single 
parameter p at least equals the order of the polynomial relating id  and p.  We can show that in 
non-singular cases there exists an exact linear estimator  

   constantdDp̂   (6.2.8) 
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 To prove (6.2.8) let 1k1  and we can see from (6.2.7) that  

   
n

1i
ini

nn

1i
1ii

n

1i
ii

n

1i
ii akp...akpckdk  (6.2.9) 

The other n-1 constants ik  remain undefined for 2i .  To solve for these unknowns we create 

n-1 equations that set the higher-order terms (n  2) in (6.2.9) to zero: 

   0ak
n

1i
iji  for j = 2,3,…,n  (6.2.10) 

Therefore,

   
n

i ij 1j
i 2

k a a  for j = 2,3,…,n  (6.2.11) 

If we define the (n –1) element vector s  as

   12 13 1ns  -a , a ,..., a   (6.2.12) 

then:

   
1t

k 1, A s   (6.2.13) 

where ijA    a  for i,j = 2,3,…,n. 

Therefore

   
n

1i

n

1i
1iiiii akcdkp   (6.2.14) 

which is a linear function of d  and can be computed if A  is not singular, and if  

   
n

1i
1ii 0ak   (6.2.15) 
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Therefore we have proven that the parameter p can be expressed as a linear function of d , even 
though each measurement id  is related to p by a different polynomial, provided that the order of 

the polynomial n is equal to or less than the number of different observations, and the matrix A
is not singular. 

6.2.3:  Non-linear Estimators

Non-linear estimation is a major area of current research.  In this section six of the more common 
methods are briefly illustrated.  These methods include:  1) iterated linear estimates, 2) computed 
MAP and MSE estimators, 3) MSE estimators operating on data vectors augmented by simple 
polynomials or other non-linear functions, 4) same as method (3), but with rank reduction of the 
augmented data vector, 5) neural networks, and 6) genetic algorithms. 

Iterated linear algorithms are best understood by referring to Figure 6.2-1, where it is clear that a 
single linear estimator will be non-optimum if we know that the desired parameter is in a region 
where the linear estimator is biased; for example, this estimator is biased at the two ends of the 
distribution and in the middle.  If, however, the first linear estimate of the desired parameter p is 
followed by a second linear estimator which is conditioned on a revised probability distribution 
P{p}much more narrowly focused on a limited range of p, then the second estimate should be 
much better.  This process can be iterated more than once, particularly if the random noise is 
small compared to the bias introduced by the problem non-linearities. 

 In some applications these iterations are computationally burdensome.  In such cases, if the 
parameter being estimated changes slowly from sample to sample, the first guess for each new 
estimate can be obtained from the previous estimate.  If the two consecutive samples are very 
similar, which is frequently the case, then one or two iterations should suffice, reducing the 
computational burden that would be imposed if a less accurate first guess were used.  If the first 
guess yields a predicted data vector that departs substantially from the observed data, then a 
default first guess might be used instead. 

An example of a non-linear MAP estimator is shown in Figure 6.2-2b.  The same figure also 
illustrates how a non-linear MSE estimator could be computed. 

Mildly non-linear estimators can also be found by using 

   augdDp̂    (6.2.16) 

where augd  is the original data vector augmented with simple polynomials, trigonometric 

functions, or other non-linear elements which efficiently represent the kind of non-linearity 

desired.  The determination matrix D  is computed using (6.1.23).  One difficulty with this 

technique is that the resulting data correlation matrix dC  is often nearly singular and the 
estimates may be unsatisfactory. 



319

 In this nearly singular case it is useful to reduce the rank dC  first using the KLT or the 
equivalent PCA, as discussed in section 6.1.5.  Rank reduction can be used to reduce the 
dimension of the original unaugmented data vector d  or the dimension of the augmented data 

vector augd , or both.  In either case those eigenvectors with small eigenvalues, and therefore 

poor signal-to-noise ratios, are dropped from the process.  This noise reduction step is more 
efficient if the KLT or PCA is performed after the variables are noise normalized so that the 
additive noise variance is approximately equal across variables. 

 Arithmetic neural networks, modeled in part after biological neural networks, compute 
complex polynomials with great efficiency and simplicity, and provide a means for matching the 
polynomials to given training ensembles so as to minimize mean-square estimation error.  Figure 
6.2-4 illustrates how a single layer of a simple neural network might be constructed. 

Figure 6.2-4:  Single layer of a feed-forward neural network 

This network operates on N input data values id  to produce M outputs '
id  which are non-linearly 

related to the inputs.  N can be larger or smaller than M.  The network first multiplies each data 
value di by a constant ijW  before these products are separately summed to produce M linearly 

related outputs, which then pass through a sigmoid operator to yield the non-linear outputs '
id .

Usually the sigmoid operators are omitted from the final layer.  One common sigmoid operator is 
xtanh'd  where x is the input to the sigmoid operator.  One of the network inputs is the 

constant unity, which permits each of the sums to be biased into the convex, linear, or concave 
portions of the sigmoid operator, depending on what type of non-linearity is desired.  If the gains 
are sufficiently large, the sigmoid approaches a step function in the limit, where it acts like a 
logic gate.  Such single-layer neural networks can be cascaded, as suggested in Figure 6.2-5, 
where the last layer of the system estimates the desired parameter vector p̂ .

1

d1

dN

1

M

W01

W11

WN1

d 1

d M



320

Figure 6.2.5:  Multi-layer neural network with two hidden layers 

 The most popular technique for determining the weights ijW  for a set of training data is the 

back-propagation algorithm, which has many variations, and about which books have been 
written.  The success and popularity of neural network techniques has lead to commerically 
available computer tool kits which make them easy to apply to practical problems.  In general the 
networks are trained for given ensembles of data and then applied to larger data sets.  Because 
neural networks have large numbers of degrees of freedom, i.e., the number of weights is large, it 
is important that the number of independent training examples be substantially larger so as to 
produce a robust result.  Otherwise the network can be “overtrained” resulting in the estimator 
slavishly duplicating the training outputs at the expense of accuracy for the larger data set.  For 
this reason, training is often stopped when an independent set of “test” estimators, not part of the 
training set, suggest that this error has ceased declining and is beginning to grow.  It is good 
practice for the degrees of freedom in the training data set to exceed the number of weights by a 
factor of three or more. 

 The more highly non-linear problems generally need more network layers and more internal 
hidden nodes, where the optimum number of layers and hidden nodes is generally determined 
empirically for each task.  Neural networks can be used not only for estimation, but also for 
recognition and category identification. 

 For complex problems it is generally best to minimize the degrees of freedom in the neural 
network and to blend it with linear systems which are intrinsically more stable.  For example, a 
neural network is often preceded by normalization of the variables so that they all exhibit 
comparable noise variances.  Then a KLT can rotate their noise-normalized input vector prior to 
a truncation that preserves only those transformed variables with useful signal-to-noise ratios.  
Current practice generally involves substantial empirical trial and error in selecting the type of 
neural network numbers (numbers of nodes and layers) and type of optimization to be employed 
on any particular problem. 

 Genetic algorithms can be combined with any of the foregoing strategies, provided the 
algorithm can be represented by a segmented character string such as a binary number.  For 
example, this numerical string can represent an impulse response that defines a matched filter.  It 
may also represent the weights in a linear estimator or neural network, or could characterize the 
architecture of a neural network, e.g., the number of layers and number of nodes per layer.  
Although one could test the performance of all possible character strings, and therefore all 

d 1NN 2NN 3NN p̂
'd ''d

“hidden layers”
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possible algorithms, and choose the best, the genetic algorithm permits this trial-and-error 
procedure to be executed much more efficiently. 

 Generally all competing algorithms are represented by character strings of the same length, 
where each position along these strings has a defined significance that is the same for all strings.  
Many strings are then tested and the better ones are identified.  Elements from the better ones are 
then randomly combined (“genetically”) in the proper sequence to form new complete strings 
(and algorithms); some random mutations may also be added.  Then more testing occurs with 
multiple competing members of the new generation of algorithms, and the evaluation and 
selection process is repeated.  Thus algorithm elements compete in a “survival of the fittest” test.  
Eventually an asymptotic optimum may be approached.  In general, the estimators produced by 
genetic algorithms or neural networks are not perfect, and so several solutions are typically 
produced before the best is selected. 

 In any of these algorithms there is some opportunity to redefine the input data vector to 
include some of its spatial or chronological neighbors.  In cases where adjacent data vectors are 
statistically related, this can produce superior results.  Unfortunately the dimensionality of the 
problem often increases unacceptably rather quickly as such neighbors are included.  In this case 
it is important to employ efficient data compression techniques that preserve the more important 
information-bearing elements of the adjacent data vectors, while excluding the rest.  Kalman 
filtering is an example of such efficient use of adjacent or prior data in the estimation of a current 
parameter vector. 


