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CHAPTER 4: COMMUNICATION SYSTEMS 

4.1 INTRODUCTION 

 Communication systems convey information from one point to another via physical 
channels that propagate electromagnetic, acoustic, particle density, or other waves.  This 
information is usually manifest as voltages or currents; these may be continuous (often called 
analog) variables with an infinite number of possible values or discrete (often called digital)
variables with a finite set of known possible values.  Communications systems linking machines 
include telemetry systems that convey sensory data one way, networks that convey data two-way 
among multiple nodes, and memory systems that store and recall information. 

 Communications systems can not only link people or systems at great distances via audio, 
visual, computer, or other messages, but may link the various parts within systems, and even 
within single semiconductor chips.  They may communicate information in two directions, or 
only one way, and they may involve one node broadcasting to many, one node receiving from 
many, or a finite set of nodes communicating among themselves in a network.  Even active 
measurement and remote sensing systems can be regarded as communications systems.  In this 
case the transmitted signals are designed to be maximally sensitive to the channel characteristics, 
rather than insensitive, and the receiver’s task is to extract these channel characteristics knowing 
what was transmitted. 

 A two-node, one-way communication system consists of the channel that conveys the 
waves, together with a modulator and a demodulator.  All communications systems can be 
regarded as aggregates of these basic two-node units.  The modulator transforms the signal or 
symbol to be transmitted into the signal that is propagated across the channel; the channel may 
add noise and distortion.  The task of the demodulator is to analyze the channel output and to 
make the best possible estimate of the exact symbol transmitted, accounting for the known 
channel characteristics and any user concerns about the relative importance of different sorts of 
errors.  A sequence of symbols constitutes a message.  A complete communications system is 
formed by combining many two-node, one-way systems in the desired configuration. 

 For convenience we shall designate systems that involve a finite, discrete set of intended 
messages as “digital”, and systems communicating continuous variables with an infinite number 
of possibilities as “analog”.  We further designate digital systems as being binary systems if only 
two possible symbols exist, and M-ary systems otherwise, where M is the number of possible 
alternative symbols.  Figure 4.1-1 presents a block diagram for a two-node, one-way M-ary 
communications system.  In the figure the transducer at the output of the modulator develops a 
voltage output ov (t)  that is a unique function of time depending on which of the M possible 

symbols are to be sent: S1, S2, …, SM.  This output signal could also be a current waveform, a 
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pressure waveform, a torsion waveform, a particle density waveform, or any other signal 
intended to propagate across the channel. 

Figure 4.1-1:  Communications system block diagram 

 In this general representation the channel might include an amplifier, transmitting antenna, 
propagation path, a receiving antenna, more amplifiers, and a detector.  The antennas act as 
transducers between the waves that propagate in the channel and the voltages or other signals 
within the receiver and transmitter.  Channel noise can be added at the transmitter, along the 
path, and in the receiver.  This noise may be additive Gaussian white noise, various forms of 
multiplicative noise, or combinations thereof.  Channels can also introduce systematic and 
random distortions, fading, and variations in propagation delay, possibly even leading to 
transpositional noise where some portions of the signal arrive out of sequence.  The distinction 
between multiplicative noise and distortion is sometimes ambiguous. 

 A well-designed demodulator compensates for all the systematic distortions in the signal 
and hypothesizes which waveform was actually transmitted.  This estimate is designed not only 
to choose the symbol most probably transmitted, but also to take account of any cost function
that assigns different penalties to various sorts of errors.  For an M-ary system a cost function is 
easily represented as a matrix, where the rows correspond to possible transmitted symbols, and 
the columns correspond to possible received symbols; in general this is an M  M matrix.  Each 
entry in the matrix consists of a number representing the cost to the user associated with that 
possibility.  As discussed later, the optimum demodulator is designed to minimize this average 
cost over the estimated probability distribution of transmitted symbols. 

 Section 4.2 discusses the design of optimum binary and M-ary communication systems, 
followed by the design of transmitted signals in Section 4.3.  How well such systems perform 
depends partly on the channel characteristics.  The system performance for various M-ary 
communication systems is evaluated in Section 4.4.  Communication systems can be improved 
by coding the signals to survive channel impairments (channel coding) and to reduce their 
redundancy (source coding); these techniques are discussed in Sections 4.5 and 4.6, respectively.  
Representative analog communication systems, such as amplitude modulation (AM), frequency 
modulation (FM), single sideband (SSB), and others, are discussed in Section 4.7.  Finally, 
system design issues are reviewed in Section 4.8 for a variety of wired, wireless, satellite, and 
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optical fiber communication systems.  In Chapter 5 these communication system perspectives are 
also applied to active remote sensing systems. 

4.2 BINARY AND M-ARY COMMUNICATIONS 

 In this section we focus on the design of an optimum demodulator for binary or M-ary 
communication systems.  Signal design and system performance analyses for such systems are 
discussed in Sections 4.3 and 4.4, respectively. 

 In binary systems there are two possible transmitted symbols, designated here as S1 and S2.
We assume these have a priori probabilities of P1 and P2, respectively, where “a priori” means 
prior to any information about the received signal.  The modulator transmits v1(t) or v2(t), 
depending on the symbols; these can also be represented as vectors 1v  and 2v , where the 
transmitted symbol waveforms are considered to be sampled signals.  The demodulator must 
interpret the waveform emerging from the channel, represented as v(t) or its sampled equivalent 
v . 

 The task of designing an optimum demodulator can be viewed very simply.  For example, 
suppose the received voltage is known to range between zero and 10 volts.  The demodulator 
design can be characterized simply as dividing this possible range of voltages into two regions, 
V1 and V2.  If the received voltage v falls in the range of V1, we hypothesize that S1 was 
transmitted; we designate this hypothesis as H1.  Similarly, if the received voltage v falls in the 
region V2, then this leads to the alternate hypothesis H2.  In a simple system V1 might correspond 
to all voltages between zero and 5 volts, while V2 corresponds to the rest. 

Figure 4.2-1:  Demodulator decision regions in voltage space va, vb

 The situation becomes a little more complicated when the received voltage is a waveform.  
In the special case where the received waveform consists of two voltage samples a bv v ,v ,

the demodulator design can be represented by a two-dimensional figure where the axes 
correspond to the two voltage samples, va and vb.  The assignment of possible combinations of 
these two samples to the hypotheses H1 and H2 is illustrated in Figure 4.2-1.  The situation 
pictured here is quite general and shows how all combinations of va and vb may not be feasible, 
and also shows how the two regions V1 and V2 (corresponding to H1 and H2, respectively) can 
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even be scrambled.  This concept of partitioning the space of possible received signal waveforms 
into two or more regions corresponding to the set of possible transmitted symbols can clearly be 
extended to an arbitrary number of dimensions. 

 The task of demodulator design then consists in the binary case of defining the regions V1

and V2.  The cost function we wish to minimize when we optimize this demodulator is frequently 
simply the probability of error Pe.  This error probability depends on the a priori probabilities of 
S1 and S2 (P1 and P2, respectively) and on the conditional probabilities of receiving the voltage 
waveform v  when S1 is sent 1p v S .  Thus 

   
2 1

e 1 1 2 2V V
P P p v S dv P p v S dv  (4.2.1) 

To simplify this expression to an integral over only one subspace, V1, we note that the total 
probability that some voltage waveform v  is transmitted is unity: 

   
1 2

1 1V V
p v S dv p v S dv 1 (4.2.2) 

Therefore,

   
1

e 1 2 2 1 1V
P P P p v S P p v S dv  (4.2.3) 

It is clear from (4.2.3) that to minimize the probability of error we simply assign a given point in 
the received-signal space to the region V1 when 

   1 1 2 2P p v S P p v S   (4.2.4) 

That is, in this binary case, we simply choose hypothesis 1 or 2 according to which received 
signal iv  has a greater a posteriori probability i iP p v S . 

 A simple example is the one-dimensional binary case with additive Gaussian noise.  Assume 
that the message S1 corresponds to a transmitted signal of A volts, while S2 corresponds to zero 

volts.  If the additive Gaussian noise has variance 2
n N , then the conditional probabilities are 

   

2

2

v A 2N
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v 2N
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1
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2 N
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p v S e
2 N

  (4.2.5) 
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 These conditional probabilities are plotted in Figure 4.2-2, but are scaled by the a priori
probabilities P1 the show how the possible voltages v are assigned to the two regions V1 and V2

in accord with (4.2.4).  in Figure 4.2-2a the a priori probabilities are equal for the two possible 
messages, and the decision threshold A/2 given by (4.2.4) falls halfway between zero and A 
volts.  Figure 4.2-2b shows how the decision threshold is biased so as to shrink the region V1

assigned when P1 < P2.  That is, Pe is minimized by biasing the outcome to favor the message 
more likely to have been transmitted a priori.

Figure 4.2-2a: A posteriori probabilities for equal a priori probabilities. 

Figure 4.2-2b: A posteriori probabilities for unequal a priori probabilities. 

 This rule for defining the region V1 given by (4.2.4) can be expressed in terms of the 
likelihood ratio :

   1 2
1
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p v S P
V

Pp v S
  (4.2.6) 

The decision rule in (4.2.6) can equivalently be expressed in terms of the logarithm of the 
likelihood ratio 

   2 1 1ln ln P P V   (4.2.7) 
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The advantage of using the logarithm for additive Gaussian noise follows from its simple form 

   

2 2

2

ln v A 2N v 2N

2vA A 2N
 (4.2.8) 

Combining (4.2.7) and (4.2.8) leads us to a simple decision rule:  choose V1 if 

   
2

2 1A 2Nln P P
v , or

2A
  (4.2.9) 

   2 1
A N

v ln P P
2 A

  (4.2.10) 

The binary decision rule of (4.2.10) is simple; the decision threshold lies halfway between the 
two transmitted voltages, zero and A, but biased by a term proportional to the imbalance in a
priori probabilities, 2 1ln P P , and also proportional to the ratio of noise variance N to the 

voltage difference A.  Thus the bias is zero if either the noise N is zero or if the a priori
probabilities P1 and P2 are equal. 

 If a certain rms voltage is being added to the received signal, superior performance can be 
obtained by averaging many such independent samples.  Let the transmitted signals S1 and S2

each consist of m samples.  The general decision rule (4.2.6) still applies, where v  is now a 
vector consisting of m entries.  To compute this likelihood ratio we need to know the conditional 
probabilities 1P v S .  In the case where the noise bandwidth is sufficiently broad that each 

sample v1 is independent, then the joint probability equals the product of the probability 
distributions for each sample separately: 

   
m

1 2 m 1 i 1
i 1

p v ,v ,..., v S p v S  (4.2.11) 

Figure 4.2-3 illustrates two representative waveforms S1 and S2 consisting of m samples.  If each 
waveform lasts T seconds, then every T seconds we can send one or the other, so as to convey 
ultimately a complex message. 
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Figure 4.2-3:  Alternate waveforms with m samples. 

To evaluate (4.2.11) under the Gaussian noise assumption, we note 

   
2

i 1iv S 2N
i 1

1
p v S e

2 N
 (4.2.12) 

Therefore the conditional probability distribution we need for evaluating our decision rule (4.2.6) 
is

   

m 2
i 1i

i 1
v S 2N

1 m
1

p v S e
2 N

 (4.2.13) 

and the decision rule (4.2.7) becomes 

   
m m 22 2

i 2i j 1j 1
1i 1 j 1

1 P
ln v S v S ln V

2N P
 (4.2.14) 

where we note 

   
m 22

2i 2i
i 1

v S v S   (4.2.15) 

Since

   
2 2

2 1 2 2 2 1 1 1v S v S 2v S S S 2v S S S  (4.2.16) 

v(t)

0 t

1S 2S

1 2 m
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it follows that the decision rule (4.2.14) can be rearranged to give 

   1 1 2 2
1 2 2 1

S S S S
v S S Nln P P

2
 (4.2.17) 

 The right-hand side of (4.2.17) is a bias term, the first part of which is zero if the energies in 
the two waveforms S1 and S2 are equal, and the second part is zero if either the additive noise N 
is zero or if the a priori probabilities P1 and P2 are equal.  The vector dot product (or correlation 
between the received signal v  and the two possible noiseless transmitted signals 1S  and 2S )
performs the function of a matched filter.  A simple block diagram of a communications receiver 
that computes (4.2.17) to yield one of two hypotheses H1 or H2 is illustrated in Figure 4.2-4.  
This receiver compares the output of a filter matched to 1S  with the output from a filter matched 

to 2S .

 The decision rule (7.2.17) that minimizes the probability of error can be generalized to M 
possible hypotheses by shifting the right-hand side of (4.2.17) to the left.  That is, we 
hypothesize that the transmitted signal is the symbol i that yields the largest biased matched filter 
response:

   i i
ii i j i

S S
f v S Nln P all f

2
 (4.2.18) 

The receiver illustrated in Figure 4.2-4 can be generalized for the M-ary case simply by adding 
more matched filters in parallel feeding the same final amplitude measurement unit that chooses 
the receiver hypothesis H. 
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Figure 4.2-4: Decision-making receiver.  The biases added to iv s
are those given in (4.2.18) 

Example 4.2.1 

 A transducer sends either 1 volt (state 1) or 3 volt (state 2) depending on its state, which has 
a probability of 0.1 or 0.9, respectively.  Uniformly distributed noise ranging from –3 to +3 volts 
is added to the signal.  How should the range –2 to +6 volts be assigned to H1 and H2 in order to 
minimize the probability of error Pe?  Suppose P1 = 0.9? 

 Solution: 

 Using (4.2.4) we choose H1 when 1 1 2 2P p v S P p v S .  Here 1p v S 0  for v 4 , and 

1p v S 1 6  for –2 < v < 4.  Similarly, 2p v S 0  for v < 0, and 2p v S 1 6  for 0 < v < 6.  

Since P1 = 0.1 and P2 = 0.9, we choose H1 for v < 0; H2 otherwise.  If P1 = 0.9 and P2 = 0.1, we 
choose H1 for v < 4 volts. 
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Example 4.2.2 

 A communications system employs 4 symbols: sin t, 2 cos t, -2 sin t, and cos t ; they 
have a priori probabilities of 0.2, 0.2, 0.3, and 0.3, respectively.  They last 1 second, and have 

additive Gaussian white noise of -1
o sysN kT 2  WHz ; 2 10  MHz.  Design an optimum 

receiver (see Figure 4.2-4b for the case of two hypotheses) for estimating H1, H2, H3, or H4, and 
evaluate any bias terms. 

 Solution: 

 Using (4.2.18), the matched filter impulse responses are i ih (t) s (1 t) ia(t)s (1 t)
where a(t) = 1 for 0 < t <1, and zero otherwise.  The biases bi are: 

i i
i i

1 2 3 4

S S
b Nln P

2
b Nln 0.2 1 4,  b Nln 0.2 1,  b Nln 0.3 1,  b Nln 0.3 1 4

The noise variance 2
o nN N B .  The filter acting on -1

syskT 2  WHz  (double-sided 

spectrum) is formed by hi(t).  Its output noise is given by 

sys 2
sys

kT
N H(f ) df kT 4

2

where 2 2H(f ) df h (t)dt 1 2  for S1 and S4 by Parseval’s theorem. 

 Each second the decision circuit selects the most probable message i. 

4.3 SIGNAL DESIGN 

 Although Section 4.2 described how to design optimum receivers that minimize the 
probability of error in an M-ary communication system, the problem of signal design remains.  
We wish to design the possible set of transmitted signals 1 2S ,  S , ..., so as to minimize the 
probability of error Pe, which is given by (4.2.1) for the binary case.  Since a trivial solution to 
this problem is to employ arbitrarily large signals compared to the noise, we must operate within 
a constraint such as a fixed average signal energy.  If the units of 1S  are volts, then we might 

choose to limit 
2

ii iS P ; this is proportional to the average signal energy.  Consider the simple 
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case of a binary communication system where the two possible signals 1S  and 2S  each consist of 
three samples, and therefore can be represented in three-dimensional space.  The noise vector n , 
which is superimposed by the channel, adds to the received signal vector to give a total received 
signal v .  This is graphically represented in Figure 4.3-1. 

Figure 4.3-1:  A pair of 3-sample signals. 

 Since the constraint on the average energy of the signals effectively limits the length of the 
vectors 1S  and 2S  in Figure 4.3-1, the design of the signals consists of determining their 
direction so as to minimize the expected probability of error Pe.  Since the additive noise n  is 
uncorrelated with the signals, the probability distributions for the total received signal 

i iv S n  are spherically symmetric and centered on 1S  and 2S , as suggested in Figure 4.3-1.  

Since errors only occur when the noise vector n  causes the received signal iv  to fall on the 
wrong side of the decision boundary separating V1 and V2, the probability of error is clearly 
minimized by choosing the signal so that 2 1S S .

 In Figure 4.3-2 two alternative signal designs are compared, both of which have equal 
probabilities of error Pe.  In each case 1 2S S 2 , but the case where 1 2S S  requires half the 

average signal energy and power that is required when 2S 0 , assuming 1 2P P .

n
1S

n
2S

1V

2V

0
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Figure 4.3-2:  Binary signal design alternatives. 

 Figure 4.3-3 illustrates how a set of four possible signals (S1, S2, S3, and S4) might be 
designed for two- and three- dimensional spaces. 

Figure 4.3-3:  Quarternary signal design alternatives. 

 The signals in Figure 4.3-3 can be represented as two or three amplitudes for successive 
samples of the transmitted signal, i.e. in a 2-D or 3-D space.  Often the transmitted signals are 
sinusoids that can also be characterized in terms of magnitude and phase, or in terms of the 
amplitudes of a real and an imaginary part.  One possible arrangement for an ensemble of sixteen 
alternative sinusoidal transmitted signals is suggested in Figure 4.3-4a where their real and 
imaginary parts form a two-dimensional array of sixteen points arranged in a four-by-four grid.  
If the noise probability spheres for the received signal form circles about each of these points, as 
normally occurs1, then it is clear we could slightly improve the relationship between average 
signal power and probability of error in two different ways.  First, we could omit those 
possibilities that use more power, where the energy required for the symbol 1S  is proportional to 

1 Spherically symmetric distributions in n dimensions form if the variance of the noise added in each dimension 
(e.g., to each sample value) is equal and the noise is uncorrelated with other noise samples and with the signal. 
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its magnitude squared.  Thus, by rounding off the corners of the constellation illustrated in 
Figure 4.3-4a, we arrive at the slightly more efficient constellation illustrated in Figure 4.3-4b.  
Still further improvement can be obtained by using a hexagonal grid, as suggested in Figure 4.3-
4c.  These three constellations contain sixteen, twelve, and twenty-one possible symbols, 
respectively. 

Figure 4.3-4:  Phasor constellations. 

 The most general case does not employ sinusoids, but uses arbitrary waveforms instead, 
characterized by many samples.  Although the n-dimensional sphere packing optimization 
problem is generally unsolved, various trial-and-error and hill-climbing techniques can be used 
to arrive at an optimum set.  In practice this is increasingly done for large-order constellations, 
although simple ensembles of sinusoids of various magnitudes and phases are often used instead. 

Example 4.3.1 

 A synchronized set of three two-voltage symbols is used to telemeter the state of a switch 
over a noisy channel.  One symbol consists of a +1-volt signal for 1 second followed by a –1-volt 
signal for 1 second.  What two other two-voltage symbols (one second each) would complete this 
trio of equal-energy symbols with minimum average Pe?

 Solution: 

 The trio of symbols Si should be as nearly opposite as possible.  In two dimensions S1, S2,

and S3 can be readily plotted.  The energy in each symbol equals 2 2a b 2 , so the vector 

length is 2  for each.  Assign S1 to the vector (1 – j), which is at -45 .  Therefore S2 is 2 2a ,b  

volts, where 2a 2 cos75 0.37 , 2b j 2 sin 75 1.37 j , and 3 3 3S a ,b  where 

3a 2 cos15 1.37 , 3b j 2 sin15 0.37 j.

0 0 0

(a)  16 (b)  12 (c)  21 

Im S  

Re S
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Figure 4.3-5:  Vector symbol set 

4.4 PERFORMANCE OF DIGITAL COMMUNICATION SYSTEMS 

 The performance of a digital communication system can be characterized by its probability 
of message error for a given signal power and noise environment.  Another important 
performance parameter is the bandwidth required by the system.  In some cases this available 
bandwidth is limited by law or physics.  In other cases it is limited by economics, and bandwidth 
may be bought and sold as a commodity.  Telephone companies, cable television companies, and 
over-the-air broadcasters all assign economic value to their available bandwidth.  Here we 
consider first the relationship between error probabilities and signal power, and later we consider 
issues of spectrum utilization. 

 Perhaps the simplest communication system involves binary communications over a linear 
channel perturbed by additive Gaussian white noise of oN 2  (watts/Hz) for the double-sided 

spectrum representation (employing positive and negative frequencies).  For a nominal one-ohm 

resistive load and signal bandwidth B Hertz, the total noise power is 2
oN B E n (t) , which we 

define as N. 

 The optimum decision rule for a binary signal (4.2.17) was to choose H1 if 

   
2 2

1 2
1 2 2 1

S S
v S S Nln P P

2
 (4.4.1) 
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2
2BT

2 2
y j 1j 2 j

j 1

2 2BT 2BT

i j 1i 2i 1j 2 j
i 1 j 1

1
E y E n S S

2B

1
E n n S S S S

2B

 (4.4.5) 

Since

   i j ijE n n N  (4.4.6) 

it follows that (4.4.5) becomes simply 

   
T2

2 22 o
1 2y 1 2

0

1 N
N S S S (t) S (t) dt

2B 2
 (4.4.7) 

 Therefore, the probability of error 
1e SP  becomes simply the integrated tail of the Gaussian 

distribution:

   
2 2

y
1

b
y 2

e S 2
y

1
P e dy

2
 (4.4.8) 

as suggested in Figure 4.4.1a. 

 This integrated area under the tail of a Gaussian distribution is so commonly used that it has 
been defined in terms of a function ERF(A), which is tabulated in reference books because it has 
no simple closed-form expression.  This error function ERF(A), for historical reasons, was 
defined not as the tail of the Gaussian distribution but as the complementary core, as suggested 
in Figure 4.4.1b.  Its algebraic definition is 

   
2

A
x

A

1
ERF(A) e dx   (4.4.9) 
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Figure 4.4.1 a)  Pe is the area in one tail of a Gaussian distribution 
b)  Area corresponding to ERF(A) 

The tail of the distribution is given by the complementary error function 

   ERFC(A) 1 ERF(A)   (4.4.10) 

To relate (4.4.8) to (4.4.9) we note 

   
2

K 2
x

K 2

1ERF K 2 e dx  (4.4.11) 

   
y

2 2
y

y

K
y 2

2
K y

1ERF K 2 e dy
2

 (4.4.12) 

where the integrand of (4.4.12) was made identical to the integrand of (4.4.8) by letting 
2 2 2

yx y 2 , which implies yx y 2  and 2
ydx dy 2 .  As a result, when x K 2 ,

then yy K b .  Therefore yK 2 b 2  and (4.4.8) becomes 

   
1e S y

1
P ERFC b 2

2
  (4.4.13) 

with the help of (4.4.10) and (4.4.12). 

 The total probability of error is the probability-weighted sum of the probability of error if S1

is sent and the probability of error if S2 is sent: 

p{y}

y
0

p{x}

x
0-b -A A 

(a) (b)

Pe

ERF(A)
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1 2e 1 e S 2 e SP P P P P   (4.4.14) 

If the probabilities of symbols 1 and 2 equal 0.5, then 

   e y
1

P ERFC b 2
2

  (4.4.15) 

Using the expressions for b (4.4.4) and y (4.4.7) we find 

   

2
1 2 2 1

e

1 2

1 N
S S ln P P1 4B 2BP ERFC

2 2N
S S

2B

 (4.4.16) 

which can be simplified to 

   1 2e
1 1

P ERFC S S
2 8N

  (4.4.17) 

by noting that if 1 2P P , then 2 1ln P P 0 .

 Not only is this expression useful because it yields the probability of error in a simple form, 
but it also suggests immediately how we might choose the signals 1S  and 2S  so as to minimize 

Pe.  That is, if we choose two symbols with equal energy, so that 1 2S S , then clearly Pe is 

minimized if 

   1 2 2 1S S S S   (4.4.18) 

That is, to minimize the probability of error for equal-energy and equal-probability symbols, one 
symbol should be the negative of the other. 

 The optimum receiver for continuous signals S(t) and noise N(t) can be simply found by 
evaluating (4.4.2) in terms of its continuous-signal equivalent.  We assume the noise is white but 
band-limited to B Hertz as suggested in Figure 4.4-2, with a double-sided spectrum noise power 

density of -1
oN 2  WHz .  Thus the average total noise power is oN B , and 

2
oE n (t) N B N .
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Figure 4.4-2:  Noise power spectrum, band limited. 

 Thus to evaluate (4.4.2) in the continuous-signal limit, we define the Gaussian random 
variable y of zero mean as 

   
T

1 2
0

y n(t) S (t) S (t) dt   (4.4.19) 

which is analogous to (4.4.3).  If the symbols S1(t) and S2(t) each last T seconds, then their 
sampled versions would contain 2BT samples.  Because the noise signal n(t) is sampled at the 
Nyquist rate (2B samples per second), the noise samples in the vector n  are independent and 
identically distributed, consistent with the assumptions we made earlier; thus the continuous-
signal case and the sampled-signal case are exactly analogous.  Similarly we define 

   
T

2 o
1 2 2 1

0

1 N
b S (t) S (t) dt P P

2 2
 (4.4.20) 

analogous to (4.4.4).  The variance of y then becomes 

   
T2

2 22 o
1 2y 1 2

0

1 N
N S S S (t) S (t) dt

2B 2
 (4.4.21) 

analogous to (4.4.7). 

 Thus, in this continuous-signal case, the expression for probability of error given by (4.4.2) 
reduces to 

   
T

2
e 1 2 o

0

1 1
P ERFC S (t) S (t) dt N

2 2
 (4.4.22) 
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analogous to (4.4.17).  In this case also, the probability of error is minimized for equal-energy 
and equal-probability symbols if 2 1S (t) S (t) .

 Using these expressions for Pe given by (4.4.17) and (4.4.22), several simple communication 
systems can be evaluated. 

 Perhaps the simplest binary communication system is on-off keying, which is abbreviated 
“OOK”.  In this case a pure tone is either turned on or turned off so the signal S1(t) is A cos ot,
while S2(t) is simply zero.  These definitions for the two symbols S1(t) and S2(t) are given in 
Table 4.4.1. 

Table 4.4.1:  Definition of modulation types and Pe

Abbreviation Modulation Type S1(t) S2(t) Pe

OOK On-off keying A cos ot 0
o0.5 ERFC E 4N

FSK Frequency-shift 
keying

A cos 1t A cos 2t o0.5 ERFC E 2N

PSK Phase-shift keying A cos t -A cos t o0.5 ERFC E N

 Two other common types of signaling are called frequency-shifting keying, “FSK”, and 
phase-shift keying, “PSK”, for which the waveforms are also presented in Table 4.4.1.  Binary
frequency-shift keying (BFSK) involves two sinusoidal symbols at different frequencies, whereas 
binary phase-shift (BFSK) keying involves sinusoids at the same frequency, but one is 180 
degrees out of phase with the other, and therefore each is the negative of the other. 

 The expressions for error probability Pe are readily evaluated for each of these binary 
communications systems using (4.4.22), and these expressions are contained in the last column 
of Table 4.4.1.  Note that the resulting expressions for error are extremely simple, and differ only 
slightly.  Each involves the complementary error function and the ratio E/No, where E is the 
energy in each symbol (or in S1(t) for OOK). 

   
T

2
i ii

0

E S (t)dt S S   (4.4.23) 

 Thus Pe is a simple function of the ratio of average symbol energy E (Joules) and the noise 
power spectral density No (Watts/Hertz = Joules).  Therefore the cost of communicating over a 
given channel can be expressed as the cost of energy, where a certain level of performance 
requires a certain received energy (Joules) per bit.  The required transmitter power is therefore 
generally proportional to the desired symbol or bit rate, and communications systems employing 
very low bit rates can successfully use very low power transmitters and very small antennas. 
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 The expressions for Pe given by Table 4.4.1 are also plotted approximately in Figure 4.4-3 
as a function of the ratio E/No (dB).  The best performance is given, as might be expected from 
(4.4.18), by binary phase-shift keying, “BPSK”.  To achieve the same Pe using frequency-shift 
keying (FSK), twice the energy is required.  This form of FSK is sometimes called coherent
FSK, where we have assumed up until now that the receiver knows exactly the two possible 
symbol waveforms, including the phase of any sinusoids.  Sometimes receivers are built where 
such phase coherence between the transmitter and receiver cannot be maintained, and the 
receiver must therefore test the hypothesis Si(t) for various phases, which slightly increases Pe

unless somewhat more energy is used, as suggested by the curve labeled non-coherent FSK.  The 
worst performance is obtained for on-off keying (OOK), which again is assumed to be coherent.  
Incoherent OOK would require still more energy. 

Figure 4.4-3:  Approximate error probabilities versus E/No

 Receivers for which the possible transmitted signals are known exactly, and that compute 
the overlap integrals between the received signals and the reference waveforms are called 
matched-filter receivers, and are generally implemented by passing the received signal through 
various linear filters with impulse responses hi(t) that are time-inverted versions of the 
corresponding possible transmitted symbols Si(t), as suggested earlier in Figure 4.2-4b. 

 More than two possible symbols can be transmitted.  For simplicity, most such systems 
employ sinusoids of different amplitudes and phases.  One variation of this is called multi-phase-
shift keying, “MPSK”.  The most common variations of MPSK are BPSK, QPSK, and 8PSK,
corresponding to two, four, and eight phases, respectively, at the same frequency and amplitude.  
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Each symbol therefore conveys one, two, and three bits of information, respectively, where the 
number of bits per symbol L = log2M.  Each such symbol is sometimes called a baud, where the 
number of bauds per second is equal to, or less than, the number of bits per second.  Figure 4.4-4 
shows the probability of bit error as a function of E/No for various MPSK systems.  It illustrates 
how the average energy per baud must increase as the number of bits per baud increases.  Note 
that the required energy per bit for a given Pe is relatively small as we move from M = 2 to M = 
4, but begins to increase substantially as M grows beyond 16.  The principal incentive for 
increasing the number of bits per baud is to reduce the bandwidth required per bit/second. 

Figure 4.4-4:  Approximate bit-error probabilities 
versus E/No for MPSK modulation 

Figure 4.4-5a shows a typical symbol pair for a BPSK system, and Figure 4.4-5b illustrates a 
typical set for QPSK.  We may estimate the spectral distribution of the transmitted signal by 
Fourier transforming a random sequence of such bauds.  Note that the symbols can involve 
abrupt steps at the end of the baud, therefore yielding more spectral sidelobes than BPSK. 
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Figure 4.4-5a:  BPSK symbols. 

Figure 4.4-5b:  QPSK symbols. 

 We can now consider the required bandwidth per bit/second; this equals 
B(Hertz)/R(bits/second).  Figure 4.4-6 illustrates the improved spectral efficiency that results as 
M increases for MPSK systems.  The required bandwidth per bit is illustrated for coherent 
MPSK with a baud error rate (BER) of 10-7.  Note that the bandwidth required per bit drops by a 
factor of two as M increases from two to four, but the corresponding increase required in baud 
energy is very small, less than 2 dB.  Although additional increases are available in B/R, they 
require increasingly expensive increases in E/No.  This graph suggests the primary reason QPSK 
(M = 4) is so popular, it reduces bandwidth without sacrificing much power. 
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Figure 4.4-6:  Approximate bandwidth per bit for MPSK versus E/No.

 The reason MPSK is not commonly used for M > 8 is suggested in Figure 4.4-7.  In Figure 
4.4-7a four possible phasors are presented corresponding to the four possible symbols.  The 
dotted lines bound the decision regions, the one corresponding to S1 being cross-hatched.  Since 
the bounds of V1 corresponding to S1 are nearly as far from S1 as would be the boundaries for 
BPSK, the required signal power is comparable.  The corresponding diagram for 16-PSK is 
suggested in Figure 4.4-7b, where the 16 possible symbols correspond to phasors arranged in a 
circle.  Now the cross-hatched region corresponding to S1 assumes an inefficient shape 
vulnerable to noise.  A better arrangement of 16 symbols in phase space is suggested in Figure 
4.4-7c, where the same average energy per symbol spaces the phasors farther apart, reducing Pe.
In this case the phasors differ in both phase and amplitude and are called 16-QAM for 
Quadrature Amplitude Modulation. 

Figure 4.4-7:  Phasor diagrams for (a) QPSK, (b) 16-PSK, and (c) 16 phase-amplitude 
modulation.

 Another way to reduce spectral sidelobes and improve spectrum efficiency is to window the 
set of possible sinusoids with other than a boxcar envelope, as suggested in Figure 4.4-8.  Figure 
4.4-8d illustrates how a boxcar envelope produces a narrow spectral feature at the expense of 
higher sidelobes in the spectral domain, where the energy spectral density is proportional to 
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22
o osin f f f f .  The cosine envelope employed in Figure 4.4-8b yields somewhat 

broader spectral features but with reduced sidelobes. 

Figure 4.4-8:  (a) MPSK with a boxcar envelope, (b) MPSK with a windowed boxcar envelope, 
(c) MPSK with overlapped windowed boxcar envelopes, 
(d) spectral widths of windowed and lapped sinusoids. 

 Both narrower mainlobes and lower sidelobes can be obtained simultaneously if the window 
functions overlap, as in Figure 4.4-8(c).  In this case the symbol set should be chosen so as to be 
orthogonal not only within each window, but also all possible combinations of symbols within 
adjacent windows should be orthogonal.  That is, i,k j,k 1S S 0  for all possible symbol pairs 

i, jS  that can occur in adjacent time slots k,k 1.  Powerful digital signal processing (DSP) 

circuits make real-time generation and reception of such symbol sets relatively straightforward.  
The spectral benefits of using lapped windows are suggested in Figure 4.4-8(d). 

 One advantage of designing transmission signals with higher spectral efficiency and low 
sidelobes is that many adjacent channels can be packed side by side with little cross-talk penalty.  
One example of this is illustrated in Figure 4.4-9, which presents the possible degradation that 
results for various channel spacings f(Hz).  The signal degradation is the degree to which the 
transmitter power must be increased to yield the same probability of error that would have been 
achieved for an isolated channel.  The horizontal axis of the figure is the dimensionless ratio 

f/R , where R  represents the channel baud rate in bauds (or symbols) per second.  The signal 
degradation is shown for cases where N = 1 interfering channel and N = , corresponding to a 
channel imbedded in an infinite number of equally spaced channels.  Note that the signal 
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degradation increases as the channels are spaced more closely together.  The figure also shows 
the relative performance for QPSK modulation with boxcar envelopes, and alternatively for one 
of several possible QPSK-like overlapping window schemes, called “tamed FM”.  The reason 
one can overcome the effects of sidelobe interference by boosting signal power is that the error 
probability is controlled by the combination of thermal noise in the receiver plus the coherent 
non-random effects of spectral sidelobes from adjacent channels.  Clearly, if the thermal noise No

= 0, boosting signal power would yield no improvement because the transmitted signal sidelobes 
could be increased proportionately.  Thus boosting transmitter power works only to the point 
where the thermal noise becomes negligible in comparison. 

Figure 4.4-9:  Approximate signal degradation versus channel separation. 

 Alternatively, we may fix the ratio E/No and let the bit error rate (BER) vary as we change 
f/R.  One such trade-off is suggested in Figure 4.4-10 for tamed FM for the cases N = 1 and  

N = .  We therefore typically use f/R values greater than 0.6.  For QPSK designed for use in a 
multichannel system, we prefer values of f/R  > 1.5.  Since QPSK yields two bits per baud, this 
corresponds to ratios of f to bit rate R greater than 0.75. 

 So far we have considered only channels that are not subject to random fading.  Fading can 
be introduced when absorbing or reflecting objects like trucks or clouds move across a 
transmission path, or when multiple beams interfere at a receiving antenna after moving along 
trajectories for which the length varies randomly due to changes in refractive index, the motion 
of reflectors, or the influence of other varying inhomogeneities.  For any fixed transmitter power, 
each fade will increase the probability of bit error substantially, and this increase must be 
averaged over all possible fades in accord with their probability.  The net effect is to increase Pe

for any given value of E/No.  Figure 4.4-3 shows the increase in Pe for Rayleigh fading and 
nonfading channels.  These errors can be reduced by a variety of signal processing techniques 
that are discussed in the next section. 
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Figure 4.4-10:  Bit-error-rate versus channel separation. 

Example 4.4.1 

 The Gaussian white noise in a receiver is 10-15 WHz-1.  What is the maximum data rate R 
(bits/sec) which can be communicated via a 10-10 watt signal at Pe = 10-6 for coherent binary 
phase shift keying?  What is R for QPSK? 

 Solution: 

 Figure 4.4-4 suggests that E/No must be ~10.5 dB for BPSK.  Therefore 
14

oE 11.2N 1.12 10  Joules per symbol and per bit.  R(bits/sec) = P(watts)/E(J/bit) = 10-

10/1.12 10-14  8.9 kbps.  For QPSK E/No  11 dB and R(bits/sec) = 2(bits/symbol) 
P/E(J/symbol) = 2  10-10/1.26  10-14  15.9 kbps. 

4.5 CHANNEL CODING AND CAPACITY 

 Errors in communications systems introduced by noise, fading, or other means are 
undesirable and sometimes unacceptable.  Fortunately, signal processing and coding can reduce 
Pe without altering channel noise or transmitter power.  More precisely, Claude Shannon proved 
that, in principle, the probability of error Pe can be made to approach zero if the channel capacity 
C (bits/second) is not exceeded, where 

   2C Blog 1 S N   (4.5.1) 

and where B is the channel bandwidth in Hertz, S is the average signal power, and N is the noise 
power, where N = NoB.  For example, (4.5.1) suggests that a channel might convey 3 bits/Hz if 
S/N = 10, and convey 7 bits/Hz if S/N = 127 (~21 dB). 
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 Although Shannon did not present a simple way to achieve this channel capacity, many 
techniques have been devised to approach these limits with varying degrees of complexity and 
delay.  Numerous journals and texts have discussed these various methods, and we shall only 
present a few of the relevant conclusions here. 

 For example, one approach suggests the important role of time delay introduced by coding.  
It can be shown that for some coding techniques 

   Tk C,R
eP 2   (4.5.2) 

where T is the time delay in the coding process, and k(C,R) is some function of the channel 
capacity C and desired data rate R in bits per second.  One coding technique characterized by 

(4.5.2) is the following.  Let the number of possible symbols of length T seconds be RTM 2 ,
where RT is the number of bits of information communicated in T seconds.  We choose as our 

symbol set RTM 2  frequencies spaced at ~1/T Hz, consistent with the spectral width of a 
sinusoid lasting T seconds.  The nominal total bandwidth occupied by this communication 
system is therefore the number of possible frequencies times the bandwidth of each.  That is, 

RTB 2 T , which we can, in principle, let approach infinity. 

 Using this approach, the channel capacity with infinite bandwidth C , which is defined as 
the limit of C as B approaches infinity (see (4.5.1)), is given by 

   
eo P 0C S N ln 2 R   (4.5.3) 

which implies that the data rate R cannot exceed oS N ln 2  if zero error probability is to be 

approached.  Therefore, 

   o eS N R ln 2 0.69 P 0  (4.5.4) 

The limit given by (4.5.4) is presented in Figure 4.5-1, together with the more familiar 
relationship between Pe and E/No for M = 2, which is BFSK.  Note that the relation Pe(E/No) for 
M=106 is not enormously different.  Figure 4.5-1 simply represents the performance for the 
classical MFSK communication system discussed in Section 4.4.  Here we see for the first time 
the benefits of letting M approach infinity, which are achieved at the expense of longer delays 
because T must increase to accommodate the extremely large numbers of possible frequencies.  
For practical reasons M typically is less than 100 so the ability of this approach to produce small 
values Pe are limited, as suggested by the figure.  Note, however, that the time delay penalties are 

modest because RTM 2 , where T appears in the exponent. 
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 Two important variations of this technique are phase modulation (PM) and frequency 
modulation (FM).  In each case the bandwidth employed for communications is expanded 
beyond the original bandwidth of the signal so that the probability of error and the effects of 
channel noise can be effectively reduced.  Such analog systems are discussed later in Section 4.7. 

Figure 4.5-1:  Approximate error probability versus E/No and M. 

 A third approach leading to a relatively simple expression for Pe in terms of C, R, and T 
employs a noiseless analog feedback channel by which the receiver can tell the transmitter what 
has been received.  The transmitter can then compensate for the previous channel errors in the 
next transmission.  The system in Figure 4.5-2 communicates R bits per second in a block lasting 

T seconds by communicating a single analog voltage accurate to one part in M where RTM 2
and RT is the number of bits sent per block. 
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Figure 4.5-2:  Noise-reducing analog feedback communications system. 

 The system communicates this precise analog voltage A by sending a succession of M 
analog voltages during T seconds at the Nyquist rate, where M = 2BT.  The noiseless feedback 
channel is continuously sending the receiver’s best estimate of the desired voltage v, which the 
transmitter subtracts from the actual voltage to obtain a difference that the transmitter then 
communicates after amplifying it by some gain G.  This gain is steadily increased over the 
duration of the transmission in a programmed way so as to maintain roughly constant transmitter 
power.  Thus by a method of successive approximations, the receiver deduces the transmitted 
voltage v, which can then be converted into the desired message containing RT bits.  These bits 
are deduced by the receiver simply by computing 2 Mlog v .  It can be shown that Pe for this 
system, assuming an optimum strategy for increasing the gain G during each block is employed, 
is given as 

   
2 C R T3 2 2

eP e 1  (4.5.5) 

Even in this ideal case of a noiseless feedback channel, the probability of error Pe approaches 
zero only as T approaches infinity.  Fortunately, as we increase the channel rate R from 
negligible values to C/2, this delay T must increase only a factor of two.  In this case, the delay 
problem becomes severe only as we try to approach the channel capacity itself. 

 A variation on the feedback-channel approach to reducing transmission errors involves 
requests for retransmission when the received signal is ambiguous due to noise or other effects.  
A wide variety of retransmission and successive approximation techniques have been devised but 
none of them permit the channel capacity to be exceeded. 

 With the exception of frequency modulation (FM), most schemes for approaching the 
channel capacity involve the use of digital channel coding.  Channel codes are distinct from 
“source codes” which reduce redundancy in the transmitted signal, and “cryptographic” codes 
that are designed to conceal information from interpretation by unauthorized parties.  One of the 
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most basic approaches to channel coding is described by a short poem attributed to Solomon 
Golomb, 

 “A message with content and clarity 
 has gotten to be quite a rarity, 
 to combat the terror 
 of serious error, 
 use bits of appropriate parity” 

 Many channel codes can be viewed as simple extensions of parity-check codes which have 
been widely used.  One simple parity check code involves breaking any bit stream (0’s and 1’s) 
into eight-bit blocks containing seven message bits and one parity bit.  The encoder chooses the 
value for the parity bit such that the total number of ones in the eight-bit block is an even number 
for an even parity code, of odd for an odd parity code.  If a single bit error occurs in such a 
block, then the block is transformed to an “illegal” message, and the recipient is therefore 
warned that one of the seven message bits may be in error (the parity bit itself could also be the 
one at fault), and should be treated with caution.  During periods where the probability of bit 
error rises substantially, the recipient of the message may instead choose to discard a series of 
blocks when even some of them indicate parity errors.  Such simple error-detection codes are 
usually used in situations where errors are so rare that an occasional warning suffices.  Usually 
the entire transaction is repeated or the message is retransmitted when such an error is detected.  
Such repetition implies a timely feedback path, however.  These codes are used not only for 
transmission of data over short and long distances, but also for storing and recalling data for 
various storage media. 

 This simple parity check concept can be extended in several ways.  For example, the parity 
bit may become a check sum, which is a multi-bit number designed to force the sum of several 
multi-bit numbers comprising the message to total one of several possible legal numbers.  These 
additions can be arithmetic or confined to columns, which are summed modulo-2, or even 
modulo-n if binary numbers are not employed. 

 Perhaps the most useful extension of the parity check concept has been to more general error 
detection and correction codes.  Consider a binary message composed of a long string of bits 
divided into blocks of fixed length.  Assume each block consists of K message bits and R check 
bits.  Conceptually, error correction can be accomplished if the number of possible illegal blocks 
is sufficiently large compared to the number of possible legal ones that errors of one or a few bits 
in any given block necessarily produces an illegal message sufficiently close to the original that 
the receiver can confidently guess it. 

 First consider how many check bits R are required to permit correction of N bits for a block 
of length K + R bits.  First, consider only received blocks that have zero or one bit in error, 
where this bit can be either a message or a check bit.  The receiver must then make one of K + R 
+ 1 choices.  One possible choice is that the received message is perfect.  The other K + R 
choices correspond to changing the one message or check bit believed to be in error.  The block 
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must be sufficiently redundant that the receiver is capable of making this decision.  That is, the 
block must contain K message bits plus enough additional check bits to instruct the receiver as to 
its proper choice.  Therefore, the number of check bits R must equal or exceed log2(K + R + 1). 

 Perhaps the simplest example is a message consisting of K = 1 bit accompanied by R = 2 
check bits.  In this case K + R +1 = 4 and R = log2(K + R + 1).  This code is not very efficient 
because the number of check bits R is a large fraction R/(R + K) = 2/3 of the total data stream.  
Table 4.5.1 shows how the communication efficiency improves for a single-bit correction code 
as the block size increases.  Until each message block comprises at least a few bytes (a byte is 8 
bits), such codes are relatively inefficient.  The extremely high efficiencies implied by the table 
for long blocks are generally not employed in practice, however, because such long blocks are 
more subject to errors and perhaps to several errors, unless the probability of bit error Pe is 
extremely low. 

Table 4.5.1  Number of required parity bits for single-error correction 

K R R/(R + K) 
1 2 2/3 
2 3 0.6 
3 3 0.5 
4 3 0.4 
56 6 0.1 
103 10 0.01 
106 20 2  10-5 

 The same logical approach permits simple calculation of the number of check bits required 
to correct two errors.  In this case each block would contain the K message bits plus enough 
check bits to accommodate the increased number of choices faced by the receiver.  The receiver 
must now decide whether there are 0, 1, or 2 errors present.  If one error is present, it could occur 
in K + R possible locations.  Two errors could be arranged in any of (K + R)(K + R + 1)/2 
locations.  Therefore, in order for a block code to correct up to two errors, we need 

2K R K log 1 K R K R K R 1 2  (4.5.6) 

The number of check bits required in order to correct two errors, and the corresponding fraction 
of the bits devoted to this purpose, are suggested in Table 4.5.2. 

Table 4.5.2  Parity bits required versus block size for double-error correction 

K R R/(R + K) 
5 7 0.6 
103 ~20 0.02 
106 ~40 4  10-5 
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 The following example illustrates one way such an error-correction code might be 
implemented.  Consider the special case of a single-error correction code where the number of 
message bits K is 4, implying R = 3 using Table 4.5.1.  Note that this is an efficient combination 
in the sense that 2R log K R 1 .

 For this (K = 4, R = 3) code we might represent each block as [m1 m2 m3 m4 c1 c2 c3] where 
mi represents the four message bits and cj represents the three check bits.  Each check bit is then 
related in a different way to the various message bits.  for example, we might let 

   1 1 2 3c m m m   (4.5.7) 

where the symbol  means sum modulo-2, and is defined so that the sum modulo-2 of two one-
bit numbers is 0 if they are identical, and 1 if they are different (i.e., 0 0 0 , 1 1 0 , and 
0 1 1 0 1).

 In similar fashion we can define c2 and c3.  Note that for each set of four message bits, one 
and only one set of check bits is legal; that is, only one-eighth of all seven-bit blocks are 
allowable.

 For this example, we have 

   1 1 1 2 3 1c c m m m c 0  (4.5.8) 

Similar expressions can be constructed for c2 and c3.  Three such equations can be represented 
compactly in matrix form, as suggested in (4.5.9). 

   

1

2

3

4

1

2

3

m

m

1 1 1 0 1 0 0 0m

1 1 0 1 0 1 0 0m

1 0 1 1 0 0 1 0c

c

c

 (4.5.9) 

which can be abbreviated HQ = 0, which defines the legal seven-bit code words Q.  In modulo-2 
matrix multiplication, the multiplication of the first row of H with Q corresponds directly to 
(4.5.8).  Thus it follows from (4.5.9) that we have defined c2 and c3 as 

   2 1 2 4

3 1 3 4

c m m m

c m m m
  (4.5.10) 
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Note that the modulo-2 operator  commutes2, and is associative3 and distributive4 with respect 
to binary one-bit multiplication ( 0 0 0 1 1 0 0 ; 1 1 1).

 Equation (4.5.9) defines how check bits ci are defined, and thus defines the legal code words 
Q where HQ = 0. 

 Suppose the received binary message vector iV Q 5, where iQ  is the set of legal seven-bit 
blocks; and where the sixteen legal blocks correspond to all possible combinations of the four 
message bits mi.  We can define an error vector E with seven entries, where the locations of 1’s 
defines the locations of the bits in error.  Thus an illegal vector V with one bit error can be 
represented as 

   V Q E   (4.5.11) 

The decoder in a single-error-correction coded system then can compute for each received vector 
V the sum-modulo-2 vector product 

   HV = HQ HE = HE  (4.5.12) 

and use the resulting vector product HE in a look-up table to determine which bit, if any, is in 
error.  If HE = 0, the received vector V is error free and one of the legal code words. 

 Although it certainly is not necessary, there may be conceptual or implementation 
advantages in defining H so that the product HE is a three-bit number specifying the location of 
the error in the seven-bit word V.  Shuffling the check and message bits as suggested in (4.5.13) 
accomplishes this for this particular example.  The columns of the matrix H in (4.5.13) have 
been arranged so that they sequentially represent the binary numbers for one through seven (S).  
Note from (4.5.9) and (4.5.13) that HE, by definition, singles out that column j of H, which 
corresponds to the one bit in E which is nonzero.  If there are no errors, HE = 0. 

2 The operator  is commutative if a b b a .
3 The operator  is associative if a b c a b c .
4 The matrix multiplication operator distributes over the vector sum-modulo-2 operator  if 

1 2 1 2H Q Q HQ HQ .
5 a  B means the element a is in the set B. 
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These same principles for designing error-correction codes can be extended to blocks of any size 
and to corrections of any number of errors, provided that the number of check bits R is 
sufficiently large relative to the number of message bits K. 

 Channel coding has two desirable effects that can be combined when designing any 
particular communications system.  One benefit is to reduce the probability of error for a given 
communications channel to any particular desired level, although this may slow the rate at which 
information is communicated.  This reduction in Pe can also be exchanged for reductions in 
costly transmitter power, antenna gain, or signal-to-noise ratio.  If coding is used to reduce 
transmitter power or such related system parameters while keeping Pe constant, these benefits are 
called coding gain.

 Consider the following simple example employing the single-bit-error-correction scheme 
described above for seven-bit blocks.  Suppose a given communication system has a probability 

of bit error 5
eP 10 .  Then the probability of an error in a four-bit message [m1 m2 m3 m4] is 

   
44 5 5

e1 1 P 1 1 10 4 10  (4.5.14) 

If we now add three bits to each four-bit message to produce seven bits, and then send it in the 
same time period at the same power, the ratio E/No is reduced by a factor of 4/7, for a loss of 2.4 
dB.  Depending on the modulation scheme, represented by a curve such as those in Figure 4.4-3, 

the reduction of E/No would cause Pe to increase, say to 46 10  per bit.  The received seven-bit 
vectors V will yield the four message bits error-free provided there are not two or more errors in 
that seven-bit block.  Because Pe is so small, we may neglect the probability of three or more 
errors to a reasonable approximation.  The probability of two errors out of seven is the 

probability of perfection in 5 bits, times the probability of error in two particular bits 2
eP ,

times the number n of possible ways two errors can be arranged in a set of seven (n = 7  6/2); 
the first error can be in any of seven positions, the second in any of six, and since the sequence is 

irrelevant, we divide by two.  Here this probability of two errors is approximately 68 10 .  The 
probabilities of various numbers of errors in a seven-bit block are suggested in (4.5.15). 
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 In the present case we began with a probability of bit error of 10-5, which increased when we 
speeded up the signal transmission to provide extra time for sending check bits.  However, once 
these check bits are interpreted, we find that the probability of block error (two bit errors in a 

single block) has been reduced approximately to 67 10 .  To be fair, we should express this as 
an equivalent probability of message bit error.  In this case, the two bit errors in an erroneous 
block will not be corrected if HQ = 0.  Since only two out of seven bits would be in error, the 

corresponding probability of message bit error is two-sevenths of 67 10 , or 6
eP 2 10 .

 So far we have not changed the average transmitter power; we merely reduced the energy E 
per bit by increasing the bit transmission rate by the factor 7/4.  We now may reduce this average 
transmitter power until the net effective Pe after decoding increases to the original level of 10-5.
It is this achievable reduction in transmitter power (or the equivalent), which we define as coding 
gain.

 How much coding gain is available in any particular communication system depends very 
much on the steepness of the curve relating Pe to E/No.  For example, coding can actually be 
counterproductive unless the equivalent probability of bit error Pe is reduced sufficiently by 
coding to compensate for the increases in Pe due to the faster transmission needed to 
accommodate the check bits.  When the Pe versus E/No curve is steep, rather small increases in 
transmitter power can achieve the same reduction in Pe available through coding.  The greatest 
opportunities for channel coding occur for channels that have much more gradual Pe curves, such 
as channels which fade.  In these cases, the rather significant reductions in Pe which result for 
modest error-correction channel coding could only be achieved otherwise by substantial 
increases in average transmitter power.  Thus channel coding is used most routinely in channels 
where fading, burst noise, or similar time-varying impairments yield gradual Pe curves, such as 
those suggested in Figure 4.5-3.  In these cases, coding gains exceeding 10 dB can sometimes be 
achieved.  For any particular channel, the coding gain increases as the block length and coding 
efficiency increase, introducing system complexity and increased coding delays. 
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Figure 4.5-3: Origin of coding gain 

 Figure 4.5-3 suggests how an initial relationship between Pe and E/No can be converted to a 
second one through channel coding.  The horizontal offset between two curves is defined as 
coding gain if the required E/No is reduced by coding. 

 Since the greatest opportunities for channel coding often arise in cases where random 
channel fading or burst errors are involved, additional accommodations are sometimes made to 
the burst character of the errors.  One approach is to use interleaving, where a signal to be 
transmitted, including any check bits, is scrambled in a systematic and reversible way for 
transmission so that a single burst error is distributed over several original data blocks.  After 
reception, the bits are unscrambled and error-correcting codes can accommodate the resulting 
smaller number of errors in each block.  For example, if a typical burst causes three adjacent 
errors, then the input stream of error-corrected blocks might be grouped in sets of three for which 
the bits are then interleaved as suggested in Figure 4.5-4.  If three bits in a row are changed, then 
when the interleaving is reversed to reproduce the original three blocks, each of these blocks will 
contain only one error, which can be accommodated. 
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Figure 4.5-4:  Interleaving to reduce burst errors. 

 Another approach is to use Reed-Solomon codes.  These codes tolerate adjacent bit errors 
better than random ones.  They are formed by grouping many bits together into single symbols, 
for which symbol-error-correcting codes are constructed.  A single-error correcting code thus 
corrects any single symbol which is erroneous, but that symbol might convey four bits of 
information and have sixteen possibilities, for example. 

 One technique for dealing with burst errors which does not employ codes is diversity, where 
this can include space diversity, frequency diversity, and polarization diversity.  In each case two 
or more propagation paths with independent and detectable burst errors are employed.  Since the 
probability of simultaneous burst errors on two or more channels can become vanishingly small, 
rather low order diversity systems are often very satisfactory.  Diversity obviously can be 
combined with other channel coding techniques. 

 The examples thus far have involved block codes, where each block as it arrives is 
interpreted independently of data arriving previously or subsequently, with the exception of 
interleaving, which simply scrambles bits in an orderly known way.  Convolutional codes are 
different.  Each bit transmitted is a function of the M most recent bits to have arrived at the 
encoder for transmission.  The decoder in turn produces the hypothesized output bit as a function 
of the M most recent bits received from the channel.  M is called the constraint length.

 An example of a rate one-half constraint-length-3 convolutional coder is illustrated in Figure 
4.5-5.  In this case the transmitted output bit is taken alternately from two possible modulo-2 
adders; since the message bit rate is therefore half the transmitted rate, we call it a rate-one-half 
coder.  A simple error-checking decoder is also shown in Figure 4.5-5.  The contents of both 3-
bit registers are identical.  In this case the decoding shift register contains the first two bits in any 
three-bit sequence, a and b.  The value a is added to the incoming message a c  and a b  is 
added to a b c .  In either case an error-free system will yield the correct value for c.  If there 
are no errors the outputs of the two modulo-2 summers in the decoder will be identical, and when 
they are subsequently summed modulo-2 the result is 0 unless there is a bit error.  Information 
about which received bit is in error can be obtained by assuming temporarily that both 
hypothesized values for c are correct, and then observing the subsequent behavior of two 
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different decoding results, one for each hypothesis; one of them will remain error-free for an 
extended period, whereas the other typically will indicate an error almost immediately, 
suggesting that hypothesis was faulty. 

Figure 4.5-5:  Convolutional coder and decoder. 

 Convolutional coding systems lend themselves to such deferred decision making, yielding 
better error performance.  Such deferred or soft decisions can be implemented in other ways as 
well.  For example, the binary communications systems described in Section 4.2 divided the 
received signal space v  into M regions, each corresponding to an explicit hypothesis concerning 
which symbol was transmitted.  An alternative is to further subdivide this received signal space 
into more regions, some of which correspond to specific ambiguities.  For example, a binary 
communications system can be divided into three spaces, two being unambiguously 0 or 1, and 
one corresponding to uncertainty, which could be resolved advantageously after more data had 
been received.  The same binary decision space could be divided into even more degrees of 
certainty concerning whether 0 or 1 were transmitted.  The use of soft decisions in modern 
communications systems can typically yield up to a few dB improvement in the signal-to-noise 
ratio for the same Pe.

Example 4.5.1 

 For the case of Example 4.4.1 and coherent BPSK modulation, a 10-10 W signal yielded Pe

10-6 for 8.9 kbps and 10-15 WHz-1 white noise in the receiver.  The associated signal bandwidth is 
roughly 8.9 kHz for BPSK.  For this bandwidth, signal power, and noise, what is the actual 
channel capacity?  For the same bandwidth, data rate, and noise, what is the minimum possible 
signal power for Pe = 0?  By how many dB can it be reduced in theory? 

c b a c b a

2R bits/sec

Sum Modulo 2

3-bit shift register 

R bits/sec 

1 = error flag (R sums s-1)

R bits/sec
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Solution: 

 Shannon’s channel capacity theorem (4.5.1) says oC Blog 1 S N B bits / sec
10 15

28900log 1 10 8900 10 8900 3.5 31 kbps .  If C = 8900 (bits/sec) = B(Hz), 

then olog 1 S N B 1 and therefore 12
oS N B 8.9 10 (W), which is a savings of ~10.5 

dB even as Pe  0.  This theoretical limit to coding gain is impossible to achieve in practice. 

Example 4.5.2 

 Assume for a particular channel modulation scheme Pe = 10-6 for E/No = 18 dB, and more 
generally 10 e olog P E 3N  dB in the operating region of interest.  What coding gain results at 

the reduced Pe if single-error correction for 1000-bit blocks is employed?  What gain results if 
double-error correction is employed for 1000-bit blocks? 

 Solution: 

 Single-error correction requires 10 bits per 1000-bit block 10 32 10 10 1 , and therefore 
a speed up of one percent (10/1000) with a corresponding one percent increase in average power 
since E/No remains constant if Pe does.  Errors result only if two or more occur in a single block, 

where the probability of two errors is 
998 26 61 10 10 71000 999 2 5 10  per block.  

The probability of three or more errors is negligible in comparison.  Two or more errors per 
block typically results in the wrong bit being corrected, and 3-bit errors per block.  One percent 
of these are parity bits and irrelevant.  The resulting reduced message-bit error probability is 

7 3 9~ 3 5 10 10 1.5 10 .  Had we wished to achieve this Pe without coding, E/No (dB) 
would have to be 10 e3log P 26.5  dB, or ~8.5 dB greater than with this coding scheme.  At 

9
eP 1.5 10  the coding gain for single-error correction therefore approximates 8.5 dB. 

 Double-error correction reduces the probability of block error roughly to the probability of 

three errors, or 
997 36 61 10 10 1010 1009 1008 3! 101.7 10 .  Such a block would 

typically have roughly 3 + 2 = 5 message bit errors after corrections, so 
10 3

eP 5 1.7 10 10 138.5 10 .  Had this small Pe been our original objective, E/No

would otherwise have to be 10 e3log P 36.2  dB, so the coding gain would be 18.2 dB.  These 

coding gains are large because the given Pe(E/No) relation is not steep.  Computing the coding 
gain for a given Pe usually requires numerical or iterative methods, using arguments similar to 
those employed here. 
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4.6 SOURCE CODING AND TRANSFORMS 

Source coding or data compression generally removes redundancies in the input signal, 
which can be reversibly recovered.  They furthermore may discard less perceptible or important 
aspects of the signal stream, which may not be recovered at the decoder; this is called lossy 
coding and is discussed later.  Lossless coding or reversible coding corresponds to source-coding 
systems where the receiver recovers the desired source message perfectly even though the bit 
rate conveyed over the communications channel may be less than the bit rate associated with the 
original signal.  Lossless entropy coding, sometimes called Huffman coding, generally employs 
fewer bits to indicate the presence of common symbols or messages, and employs more bits for 
those which are more unexpected or unusual.  This strategy reduces the average number of bits 
required to convey any signal stream. 

 A simple example illustrates the principle.  Suppose four possible symbols are to be 
transmitted, which could be represented with two bits each so that the average data rate is two 
bits per symbol communicated.  If, however, the a priori probabilities of these four symbols are, 
for example, 0.5, 0.25, 0.125, and 0.125 (totaling unity), then a more efficient coding scheme is 
to represent the first symbol by the transmitted message “0”, the second symbol by “11”, and the 
last two by “100” and “101”, respectively.  Unbroken sequences of such symbols following one 
another endlessly form a commaless code, which can be subdivided unambiguously into its 
component parts, provided synchronization correctly establishes the location of the first bit.  For 
example, the commaless bit stream 0100101111100100 can be divided unambiguously into 0, 
100, 101, 11, 11, 0, 0, 100.  Such bit streams are generally self-synchronizing. 

 The average bit rate communicated in this example is then one bit times its probability (0.5 
for the symbol 0) plus two bits times its probability (2  0.25 for the symbol 11) plus three bits 
times the probability that the last two symbols are transmitted (3  2 0.125).  This total average 
number of bits per symbol transmitted is 1.75, representing a small savings over the initial two 
bits per message. 

 This minimum average number H of bits per symbol is defined as the entropy of the input 
signal stream, where 

   
M

i 2 i
i 1

H P log P    bits   (4.6.1) 

and the Pi is the probability that symbol i will be sent.  In the four-symbol example above, the 
entropy H is 1.75 bits per symbol.  The entropy H of a random binary stream is one bit per 
symbol, where Pi = 0.5, and the number of possible symbols M equals 2.  The entropy of a 
typical symbol is sometimes also called its information content.  If the probabilities of sequential 
bits depend on each other, then the expression for H becomes more complex; here we assume the 
symbol probabilities are independent. 
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 Entropy codes can be implemented in a variety of ways.  For example, the symbol stream to 
be transmitted can be divided into equal length blocks, each of which is transformed into a new 
block containing more or fewer bits than the original; the encoded data stream then comprises 
unequal-length blocks.  Alternatively, the transmitted signal can comprise equal-length blocks, 
each corresponding to blocks of nonuniform length in the original symbol stream.  Finally, both 
the input blocks and the transmitted blocks can be of unequal length. 

 One important type of entropy code is called run-length coding.  Consider a two-
dimensional black and white image coded by scanning the image in a two-dimensional raster and 
converting the sensed luminance into 1’s and 0’s.  If the sample size represented by a single bit is 
small compared to the typical extent of any black or white region, the resulting bit stream will 
tend to consist of long series of 0’s broken by similar series of 1’s.  Such a message can be 
represented alternatively as the number of 0’s and 1’s in each run.  Figure 4.6-1 illustrates how 
such a conversion might be made.  The transmitted signal might simply consist of the binary 
representations for each of these run lengths or the run lengths might be Huffman coded first. 

Figure 4.6-1:  Run-length coding. 

 In general, the larger the block of data which is entropy coded, the closer the final system 
can approach the true entropy in the input data stream.  One way to entropy code smaller blocks 
but still achieve some of the savings associated with using larger ones, is to use entropy codes 
based on probability distributions conditioned by the previously transmitted symbol.  That is, for 
each transmitted symbol the conditional probability distributions for the subsequent symbol are 
computed.  Since the receiver hopefully knows this previously transmitted symbol, it knows 
which entropy code is being used on a symbol-by-symbol basis.  This technique captures some 
of the entropy reduction associated with the correlation between adjacent symbols. 

 Some of the best performing are arithmetic codes6 and turbo codes. 

 The second mechanism for reducing data rates is to use information-lossy codes, which 
achieve compaction at the expense of the signal-to-noise ratio.  The more successful information-
lossy codes distribute the added noise selectively so that it is least visible.  These codes generally 
reduce redundancy in the signal, and then quantize the resulting numerical representation.  The 
signal processing employed to reduce the redundancy must be reversed at the receiver, and can 
be quite complex. 

6 For example, see IEEE Trans. Comm., 37, 2, pp. 93-97, February, 1989. 

Input sequence

Run lengths 

…1000111111100111100000000011…

… 3 7 2 4 9 … 
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 Because the sensitivity of the human visual and auditory systems to noise appears to vary 
with frequency over the spatial or temporal spectral representations of these signals, various 
frequency transforms are often computed before quantization is performed.  One basic 
representation is the discrete Fourier transform (DFT).  It is defined over a block of N samples 
as

   

N 1
jn2 k N

k 0

X(n) x(k)e

[n 0,1,..., N 1]

 (4.6.2) 

Its inverse transform (IDFT) is 

   
N 1

jn2 k N

n 0

1
x(k) X(n)e

N
  (4.6.3) 

Equation (4.6.3) defines how signal x(k) can be constructed by superimposing the complex 

spectral coefficients X(n) by weighting them with the basis functions given by jn2 k Ne .  This 
basis function is unity for all values of k when n = 0.  The DFT basis functions are presented in 
Figure 4.6-2(a) for n = 0, 1, and 2.  These basis functions correspond to real values for X(n).
Note that in general X(n) is complex, and contains 2N scalers for a signal sampled at N points.  
If x(k) is either pure real or pure imaginary, then X(n) is redundant by a factor of 2.  The real and 
imaginary parts for the DFT of a real function are unique only for n < N/2; the axis of symmetry 
is near n = n/2, and X(0) = X(N). 

Figure 4.6-2(a):  Discrete Fourier transform (DFT) basis functions for Re{Xn}.

 Two other block transforms which are widely used are the discrete cosine transform (DCT)
and the discrete sine transform (DST), for which the basis functions for low values of n are 
illustrated in Figure 4.6-2(b) and (c), respectively.  Note that these transforms are linear and 
lossless; the number of unique scalars produced by these transforms equals the numbers of 

0

n = 2

n = 1

n = 0
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unique (real-valued) scalars in the input signal.  Compaction comes only as we quantize these 
output spectral coefficients and possibly even discard some. 

Figure 4.6-2(b):  Discrete cosine transform (DCT) basis functions. 

Figure 4.6-2(c):  Discrete sine transform (DST) basis functions. 

 Note that the DCT, given by (4.6.4), transforms N real samples into N real spectral 
coefficients, whereas the DFT produces complex spectral coefficients; this simplicity of the DCT 
has contributed to its popularity. 

   
N 1

o
k 0

2Y n c  y k cos n k 0.5 N
N

 (4.6.4) 

where co = 2-0.5 if n = 0, and 1 otherwise. 

 Since the number of output coefficients generally equals the number of input coefficients, 
the signal compaction benefits of transforms lie elsewhere.  Consider a signal which is sampled 
well above its Nyquist rate.  Its transform will have significant coefficients only at lower 
frequencies, and thus the number of significant parameters needed to approximate this signal in 
the spectral domain has indeed been reduced.  Even if these high-frequency coefficients are not 
reduced to zero, fewer bits are needed to represent them to any desired level of accuracy.  Since 
most of the redundancy in real signals lies in the correlations between adjacent samples in one, 

0

n = 3

n = 2

n = 1

n = 3

n = 2

n = 1

n = 0

0
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two, or more dimensions, spectral techniques are efficient at representing them in a compact 
fashion.

 The Karhounen-Loeve transform (KLT) is designed to achieve the maximum compaction 
possible for a signal whose variations are characterized by a jointly Gaussian random process.  
Its basis functions are the eigenvectors of the signal correlation matrix.  Among other transforms 
of special interest are two families called lapped orthogonal transforms (LOT) and modulated
lapped transforms (MLT).  Both the LOT and MLT employ basis functions that extend into 
adjacent blocks while remaining orthogonal within their own block and orthogonal between 
blocks.  Because they avoid the sharp discontinuities which occur in the DCT and DFT basis 
functions, they effectively exhibit lower sidelobes when representing multi-block signals; this 
makes them more efficient at compaction.  Although the DST employs basis functions without 
sharp discontinuitites at block boundaries, it is less efficient at representing constant signals 
because many basis functions must be employed in order to minimize artifacts at the block 
boundaries.  For both the LOT and MLT, constant signals across many blocks can be represented 
by linear superpositions of only the first term, as in the case of DFT and DCT; this is true in both 
one and two dimensions.  Lower order basis functions for both the LOT and MLT are suggested 
in Figure 4.6-3. 

Figure 4.6-3:  Lapped transform basis functions (a) LOT, (b) MLT. 

 Figure 4.6-4 illustrates the average and standard deviation of the energy in each of the basis 
functions for various orthogonal representations for a typical image or auditory signal that has 
been divided into a large sequence of blocks.  Note that the least efficient representation is given 
by Figure 4.6-4(a), which is the original representation in space or time.  In this case the energy 
is distributed equally among the various single-impulse basis functions, each corresponding to a 
different point in space or time.  The energy is distributed equally because we have assumed the 
signal is stationary.

Block
n = 1 

n = 2 (a) Block

n = 1

(b)
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Figure 4.6-4:  Energy compaction for transforms of increasing coding efficiency, a-c.  n 
represents space or time in (a), and frequency in (b) and (c). 

 The total energy is, by Parseval’s theorem, identical for representations in the other 
transforms illustrated in the figure.  The transforms differ, however, in their ability to concentrate 
energy in the lower order functions.  Note that the LOT and MLT typically achieve higher levels 
of compaction than the DFT or DCT because of their overlapping nature into adjacent blocks.  
The KLT is superior to the DFT and DCT by virtue of its mathematical definition as the 
optimum transform for a given ensemble of waveforms governed by a jointly Gaussian random 
variable process.  However, it can be shown that for first-order 1-D or 2-D Markovian jointly 
Gaussian processes, the DCT is the KLT.  Best of all is a lapped KLT. 

 Figure 4.6-5 suggests what the two-dimensional DCT coefficients might be for 8  8 pixel 
blocks comprising a typical image.  The magnitude contours for the coefficients corresponding to 
the smoother portion of the image are indicated by blocks of type (c), where the significant 
entries are all in the upper-left-hand corner, as shown in the figure.  Regions of the image 
containing strong horizontal striations might have coefficient magnitudes characterized by (d), 
where most of the energy is in the low, horizontal frequency terms.  Vertical striations and 
diagonal striations might produce coefficients as suggested in transforms (e) and (f), 
respectively. 

Figure 4.6-5:  Adaptive DCT image coding. 

 Once the representation for a given signal is chosen, a quantization scheme must be 
selected.  When all coefficients for a signal have identical statistics, the number of quantization 

(a) (b)     DCT 

8  8 real numbers

(c) (d)

(e) (f)

(a)

n

Energy

(b)

n

Energy

e.g. DFT, DCT (c)

n

Energy

e.g. LOT, KLT, MLT



215

bits assigned to each variable is generally identical. However, when the energy in the different 
coefficients is different, as in the cases illustrated in Figure 4.6-4 and 4.6-5, then more bits are 
assigned to those terms for which the average energy is greatest, and relatively fewer bits to 
those for which the average energy is less. 

 The advantages of this are illustrated by the simple example of a smooth image for which 
the luminance is uniform over each block of M samples, but randomly distributed from block to 
block between the values of zero and one.  If we wish to represent this image with eight-bit 
accuracy, then we must use approximately eight bits for each of the M samples across the block.  
In this special DC case, the total number of bits (8) required to represent this signal to the same 
accuracy in the spectral domain using the DCT is reduced roughly by a factor of M, which can 
be very significant.  Adaptive coding techniques that vary both the number of bits assigned to 
each coefficient and the amplitude of each bit as a function of frequency can extract most of the 
redundancy and realize most of the opportunities for adding imperceptible coding noise to 
natural signal streams.  Although additional reductions in transmitted data rates can be achieved 
by systems that physically model the signal source and predict its behavior-- for example, by 
motion compensation or by full knowledge of the signal’s likely evolution-- most such systems 
employing more than motion compensation are still in the research stage. 

 Additional savings can be obtained by clever choice of quantization scheme.  Usually the 
range of interest for any variable, such as signal voltage, is divided uniformly into equal-size 
quantized bins, the number of bins normally being some power of two or ten.  Because any value 
falling within a particular bin is ultimately represented by a single symbol, an RMS error is 
introduced which approximates 0.29 of the full bin width for a uniform distribution.  If we fix the 
number of bits n used to represent a given variable, and therefore the number of bins 2n, then 
there is a potential reduction in the RMS error if we make the bins of nonuniform width, using 
smaller ones in regions where the probability density of the variable is greater.  For a given 
number of average bits and a given probability density distribution, there is an optimum way to 
do this.  The nature of the result is suggested in Figure 4.6-6.  A trivial example is one where the 
random variable is uniformly distributed over only half its possible range.  If the same number of 
bits is now distributed over this half of the range only, each bin is now half as wide and the RMS 
quantization error is now halved.  Alternatively, one fewer bit can be used without degrading the 
RMS error. 
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Figure 4.6-6:  Non-uniform quantizers 

 An important variation of this technique of nonuniform quantization is vector quantization
(VQ).  Normally, scalers are quantized, whereas in VQ it is vectors.  The simplest case is a two-
element vector v a,b , where a,b might be, for example, adjacent samples in a sampled data 

stream.  The joint probability distribution of a,b is suggested by the contours in Figure 4.6-7, 
where P(a,b) is a jointly Gaussian process and a,b are clearly correlated.  Conventional scaler 
quantization is illustrated in Figure 4.6-7(a), where three bits for each a and b define which cell 
in the two-dimensional space is of interest.  In this simple case the numerical addressing of each 
cell for VQ can be made identical to conventional scaler quantization.  Figure 4.6-7(b) illustrates 
a variation, where the same three bits for each axis address nonuniform quantizers having finer 
resolution near the center of the probability distribution.  Because the probability distribution is 
skewed here by the correlation between a and b, still better performance can be obtained with 
nonlinear quantizers by rotating the a,b space into the c,d space by a matrix multiplication, as 
illustrated in Figure 4.6-7(c).  The more highly correlated the variable a and b, the greater the 
relative efficiency of the VQ scheme illustrated in (c).  In each of these three cases the numerical 
identifier for each possible vector has been divided into two subparts, one for each of two axes.  
Figure 4.6-7(d) illustrates an even more general VQ for this same problem, which achieves still 
higher performance; each equiprobable region has a unique identifier. 
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Figure 4.6-7:  Vector quantization schemes: (a) standard uniform, (b) standard non-uniform, (c) 
rotated non-uniform, (d) arbitrary regions. 

 In the practical design of vector quantizers, there is usually a significant trade-off between 
system performance and the computational encoding costs associated with assigning the 
variables to a particular vector identification number, and the decoding cost of interpreting that 
identification number in terms of the original parameters.  Vector quantizers can involve up to 
sixteen and more dimensions, although as the dimensionality increases the incentive is to use the 
simpler variants, such as illustrated in (b) and (c).  In general, the performance of VQ is roughly 
comparable to that of systems employing an efficient transform followed by an efficient entropy 
code such as arithmetic coding.  Such design choices are often made on the basis of practical 
engineering considerations rather than fundamental theoretical issues. 
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Figure 4.6-8:  Pseudo-random noise (PRN) quantization of images. 

 A third type of quantization introduces randomness into the decision process to improve the 
perceptual quality of the result.  A common variant of this technique is use of pseudo-random
noise (PRN), which is uniformly distributed over the quantization interval.  Consider an image 
with a smoothly varying luminance across its width.  A coarse quantizer would divide it into 
bands of varying shades of gray with sharp and visibly annoying boundaries between them.  It 
can be shown that if PRN is added to the analog signal prior to quantization, where the uniformly 
distributed random signal has a total dynamic range D equal to one quantization interval, and if 
the same PRN is subsequently subtracted from the reconstructed quantized signal, then the mean 
value of the resulting reconstructed quantized luminance image equals the original luminance 
curve without discontinuities in either the mean or the variance of the noisy reconstructed image.  
Figure 4.6-8(a) illustrates a luminance curve v(x) and its quantized rendition Q(v).  The resulting 
two-dimensional reconstructed quantized image is shown in Figure 4.6-8(b), and its disturbing 
character is clearly evident.  If we add pseudo-random noise nprn then Q(v + nprn) takes the form 
illustrated in Figure 4.6-8(c).  When the receiver reconstructs the image, it knows exactly the 
pseudo-random noise sequence used to generate nprn, and can subtract it to yield Q(v + nprn) - 
nprn, as illustrated in Figure 4.6-8(d).  So long as the speudo-random noise sequence is 
sufficiently scrambled as not to assume an identifiable character on its own, then this technique 
completely obliterates the artificial boundary illustrated in (b), typically without the expense of 
added noise.  Low-pass filtering can now restore the signal if the sampling rate was sufficiently 
high.

 A generalization of this technique involves for each independent signal sample the pseudo-
random selection of a quantizer from a suite of possible quantizers, each with its own slightly 
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different distribution of quantization levels.  The signal reconstruction levels associated with any 
quantized variable correspond to the original selected quantizer.  Pseudo-random noise 
sequences can be generated by simple digital circuits; the sequence used in the receiver must be 
synchronized, however, with the sequence used at the transmitter.  The improvements offered by 
such random quantization schemes are generally perceptual, unless low-pass filtering of the 
output can be employed to reduce rms error. 

 A final form of quantization is also nonlinear, where the inter-level spacing is small at low 
signal levels where human sight or hearing is more sensitive (e.g., in quiet musical passages), 
and larger at higher levels (e.g., loud passages).  This technique is used to reduce the perception 
of quantization noise, and is called companding.  Using such quantizers for audio or video 
signals permits, for example, use of eight-bit quantizers to yield ten or more bits of equivalent 
noise performance. 

 Lossy coding systems generally include some transformation that maximally concentrates 
the variation of the signal into the smallest possible number of degrees of freedom, and follows 
this with an appropriate quantization stage.  Often, for simplicity, these orthogonal transforms 
are replaced with simpler predictive coding or pre-filtering and post-filtering schemes.  These are 
generally much simpler to implement and, until recently, constituted the approach most 
commonly used. 

 The general form of a predictive coder is illustrated in Figure 4.6-9.  As the signal s(t) to be 
transmitted enters from the left, a prediction of its value ŝ  based on prior data is made and 
subtracted from the original, leaving a residual signal, hopefully much smaller than the nominal 
excursions of the signal about its mean.  This residual is then coded and transmitted over the 
channel.  The receiver decodes this signal to reconstruct the original residual signal ˆs s .  This 
residual is then added to the predicted signal ŝ  to reconstruct the original signal s.  Both the 
transmitter and the receiver construct the estimate ŝ  in the same way, as illustrated in the figure.  
The coded signal, which already suffered some coding delay , is decoded to produce the coded 
signal s perfectly, but delayed by an additional decoding time of .  Thus the prediction ŝ  for t = 
to +  must be based on true values of s at a time 2  in the past.  The 3  predictor used for this 
purpose can range from very simple to very complex.  Use of the same decoders and predictors 
in the receiver as in the transmitter guarantees perfect reconstruction if there are no errors in 
transmission or execution.  The time delay in the reconstructed signal s is 2 .
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Figure 4.6-9: Predictive coder and decoder. 

 Because the effects of errors in this system are cumulative, and therefore inevitable, various 
techniques have been devised to eliminate them.  The simplest such approach is to restart the 
system at regular intervals from a synchronized prediction of the signal mean or some other 
initialization value.  Alternatively, various techniques exist for continuously devoting some 
fraction of the transmitted signal to this reinitialization and renormalization process. 

 A widely used technique for improving the perceptual performance of sample data systems 
is to use prefiltering and postfiltering to minimize the perceived mean square error.  For a given 
system for communications or signal storage and retrieval, we often seek to approximate the 
ideal desired reconstructed signal s(t) as viewed with an ideal observer impulse response 
function r(t).  A typical total system is illustrated in Figure 4.6-10.  We may model the 
communications or memory system as having quantization noise plus two additive noises over 
which we have no control.  One additive noise n1(t) (e.g., sensor noise) occurs in the transmitter 
prior to prefiltering, and the other is additive channel noise n2(t), which is effectively combined 
with the quantization noise.  We further assume that the input signal is filtered by the linear filter 
f(t) (e.g., a lense transfer or microphone response function) just prior to addition of n1(t), where 
we also have no control over f(t).  The challenge is to design the optimum linear prefilter g(t) 
which precedes the sampler, and the ideal postfilter h(t) which follows the channel.  Again, the 
output signal will be observed by some observer characterized by the impulse response function 
r(t).  These filters may be implemented as block filters operating on predefined blocks of data, or 
as infinite impulse response (IIR) filters, or as finite impulse response (FIR) filters.  The impulse 
responses of these three types of filters tend to resemble one another for any particular 
application. 
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Figure 4.6-10:  System flow diagram for prefiltering and postfiltering. 

 For a wide variety of signal types, the optimum pre- and post filters often take the form 
illustrated in Figure 4.6-11.  The prefilter typically resembles a Gaussian with a little bit of 
overshoot, sometimes called a Mexican-hat function (Figure 4.6-11(a)), whereas the ideal 
postfilter (Figure 4.6-11(b)) generally resembles a Gaussian function.  The reason why this form 
of prefilter and postfilter is generally preferred is suggested in Figure 4.6-11(c), where the typical 
signal spectrum (spatial or temporal) is shown to roll off toward the Nyquist frequency Nf,
possibly even dropping below the additive noise level No(f).  In this figure we are neglecting 
aliasing noise and n1(t). 

Figure 4.6-11:  Prefiltering and postfiltering signals: (a) prefilter, (b) postfilters, (c) prefiltered 
spectrum, (d) postfiltered spectra. 

The effect of the prefilter g(t) illustrated in Figure 4.6-11(a) is to slightly enhance the input 
spectrum S(f) at higher frequencies, as suggested in Figure 4.6-11(d).  The optimum postfilter 
H(f) is typically a low-pass filter, almost perfectly canceling the effects of the prefilter G(t).  
Thus the spectrum of the reconstructed signal is approximately that shown in Figure 4.6-11(e), 
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where the original signal spectrum S(f) has been essentially restored to its original value, but the 
post-filter H(f) has reduced the high-frequency noise introduced in the channel and otherwise.  
The optimum prefilter enhances weaker portions of the signal spectrum so that the additive 
channel noise is relatively smaller in comparison, and the postfilter compensates for this 
distortion.

Example 4.6.1 

 Estimate roughly the number of bits required to FAX a typical typewritten page with (a) no 
coding, (b) run-length coding, (c) entropy-coded run-length coding, and (d) character coding. 

 Solution: 

 A black-or-white (one bit) representation of a page requires ~1500  2000 = 3 Mbits, where 
a 5-inch line of text at 300 pixels (picture elements) per inch requires 1500 pixels or bits, and an 
8.5  11-inch page needs more pixels vertically (~2000) than horizontally (~1500).  A typical 
line with 80 characters might require 240 runs of 0’s and 1’s if the characters average 1.5 vertical 
strokes each.  If we represent each run with 11 bits (to accommodate the maximum run of 1500 
pixels) then each such line requires roughly 11  240 = 2600 bits, more than the original 1500!  
However, in typical text over one-third the lines are pure white, requiring less than 30 bits, and 
another third might contain only the dangling tails of y’s, g’s, etc., or the tops of d’s, f’s, h’s, etc.  
For these lines only ~40 runs might be required, or ~440 bits.  The average is roughly (1500 + 30 
+ 440)/3 = 657 bits per line, a savings of ~2.3.  Entropy coding of run lengths of ~7 – 20 white 
pixels and runs of 1 – 13 black pixels, yields a span of 13 which could be represented by 4 bits.  
Thus 11 bits per run could probably be Huffman-coded here to yield roughly another factor of 
two compression for the 40- or 240-run lines, but little savings for the empty lines.  We might 
expect in this case a total of (1500 + 440)/6 + 30/3 = 333 average bits per line, a further savings 
of ~2.0, or a total savings of ~4.5.  Character coding would require only 26 letters in two forms, 
plus punctuation, etc., or an alphabet of 64 – 128 characters requiring 6 or 7 bits.  A page of 80 
40 characters would require 3200  7 = 22,400 bits versus 3  106, a savings of 134.  Entropy 
coding might increase this to a factor of 200 or more, particularly when we entropy-code 
combinations of characters or even the words themselves. 

4.7 ANALOG COMMUNICATIONS 

Analog communication systems convey analog, or continuously varying signals from one 
point to another, or into and out of a memory or recording system.  We consider such systems to 
be “analog”, even when implemented digitally, if they contain vulnerable points where additive 
noise readily blurs one parameter value into adjacent values.  One essential character of analog 
systems, then, is that successive processing of the same signal gradually degrades it with each 
pass through any system.  In contrast, digital systems are usually constructed so that multi-pass 
processing introduces little or no cumulative degradation.  The degradation can, in fact, be zero 
an arbitrarily large fraction of the time. 
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 Clever design of transmitted analog signals can, however, achieve many of the benefits of 
channel coding by similarly exchanging bandwidth for signal-to-noise ratio.  Analog systems can 
also provide source coding benefits, for example, by dividing an analog signal into subbands that 
are transmitted over different subchannels with signal-to-noise ratios adapted to the amplitudes 
and perceptual significance of these various subbands. 

 One very simple analog communications system is a double-sideband synchronous carrier
(DSBSC) system.  To convey this signal s(t) over a channel with additive Gaussian white noise 
n(t) near a carrier frequency c requires us to recover s(t) from the received signal x(t), where 

   c cx(t) A s(t)cos t n(t)   (4.7.1) 

Multiplication of the signal s(t) with the carrier c at the transmitter produces sum and difference 
spectra which appear as upper and lower sidebands on either side of the carrier, as illustrated in 

Figure 4.7-1.  The double-sided noise spectrum at the receiver has amplitude -1
RkT 2  W Hz ,

and the mean squared value of the noise n(t) is 

Figure 4.7-1:  Signal and noise spectra. 

   2
R on (t) kT 2 4W N 4W  (4.7.2) 

The base bandwidth of one sideband is W Hz.  We assume here a nominal 1-ohm impedance so 
that we may relate the voltage n(t) to noise power.  The receiver noise temperature TR, is defined 
and discussed in Section 2.2.1. 

 Figure 4.7-2 illustrates the basic transmitter and receiver configurations which can be used 
to recover the estimated original signal ŝ(t)  from the noisy received signal x(t).  A simple 

receiver simply multiplies the received signal x(t) by cos ct.  This translates the double-
sideband transmitted signal to dc, and the signals produced by this multiplier at 2 c are 
eliminated by the low-pass filter which follows, as illustrated in Figure 4.7-2(b). 
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Figure 4.7-2:  Transmitter and receiver for double- 
sideband synchronous carrier transmission. 

 The question of interest is how the signal-to-noise ratio of the detected output is related to 
the signal-to-noise ratio which would have resulted had we simply transmitted the signal s(t) 
directly, adding n(t).  To evaluate this output signal-to-noise ratio, we need to define the noise 
more accurately as 

   c c s cn(t) n (t)cos t n (t)sin t  (4.7.3) 

where the cosine and sine terms of the noise, nc(t) and ns(t), are slowly varying with bandwidths 
W over which the noise is white.  As a result 

   2 2 2 2 2
c s c sn (t) n (t) n (t) 2 n n  (4.7.4) 

   2
c c c s c cy(t) A s(t) n (t) cos t n (t)sin t cos t  (4.7.5) 

where the second term containing the product sin ct cos ct is centered at 2 c, where it is 
removed by the low-pass filter.  The first term is proportional to cos2

ct, which equals 

c1 cos2 t 2 .  Only the factor 1/2 survives the low-pass filter, so that the low-pass filtered 

output
lpf1y (t)  is 

   
lpf1 c c

1
y (t) A s(t) n (t)

2
  (4.7.6) 

The output signal-to-noise ratio Sout/Nout can be found from the ratio of the powers associated 
with the signal and noise terms in (4.7.6) yielding 
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2 2 2
out out c c

2
c o

S N A s (t) 2 n (t)

P 2N W s (t)

 (4.7.7) 

By convention we define the average signal power 2s (t)  to be unity, and the carrier power Pc is 
Ac

2/2.  Although in this modulation scheme the carrier is not transmitted as a separate intact 
sinusoid, we can nevertheless define the carrier-to-noise ratio (CNR) for this system as the ratio 
of the output signal power to the output noise power within the accepted bandwidth, where 

DSBSC out outCNR S N .

 An important variation of the previous modulation scheme is single-sideband
communications (SSB).  In this case we have assumed the carrier at the receiver is synchronous 
with that at the transmitter, which we can designate as SSBSC for its synchronous carrier7.  This 
system differs from DSBSC only in that we filter out one of the transmitted sidebands, halving 
the transmitted bandwidth to W hertz.  Since both the transmitted power and the noise power are 
each halved, the resulting signal-to-noise ratio and CNR are unchanged. 

 A more primitive but more widely used form of modulation is amplitude modulation (AM).  
In this case a carrier signal of peak amplitude Ac is modulated by the zero-mean signal s(t), the 
magnitude of which is restricted to values less than unity in the expression 

   
c

c c c c s c

j t

y(t) A 1 m s(t) cos t n (t)cos t n (t)sin t

Re Y(t)e
 (4.7.8) 

where the modulation index m is also restricted to values less than unity, and the additive 
Gaussian white channel noise is again divided into its cosine and sine terms.  The first term in 
(4.7.8) corresponds to a carrier frequency plus a double-sideband signal, as illustrated in Figure 
4.7-3(c).  This received signal y(t) can also be usefully represented as a slowly varying complex 
phasor Y(t) , as suggested in (4.7.8) and illustrated in Figure 4.7-3(b).  In the limit where the 
signal-to-noise ratio is large, an envelope detector can be used which approximates the received 
signal as the magnitude of the phasor Y(t)  minus a DC term.  The resulting output signal plus 

noise Y(t)  for a large signal-to-noise ratio is then approximately 

   c cY(t) A 1 m s(t) n (t)   (4.7.9) 

7 Sometimes SC signifies “suppressed carrier”, which we also have here; in effect, no carrier is transmitted. 
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Figure 4.7-3:  Amplitude modulated signals. 

The signal-to-noise ratio out outS N  can be found directly from (4.7.9) to be 

   
2 2

2 2 2 2out c
c c

out o

S 2P m s (t)
A m s (t) n (t)

N 4N W
 (4.7.10) 

 The output signal-to-noise ratio can be contrasted to the signal-to-noise ratio at the input, 
where

   

22
cin

in o

A 2 1 m s(t)S
N 4WN

  (4.7.11) 

An effective noise figure for an AM system relative to an ideal one can be computed by taking 
the ratio of these input and output signal-to-noise ratios, analogous to the noise figure for an 
amplifier.  This noise figure for AM is 

   
2 2

i i
AM 2 2out out

S N 1 m s (t) 1 0.5
F 3/ 2

S N 12m s (t)
 (4.7.12) 
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where it is slightly larger than unity because of the power wasted in the carrier.  If the product 
2 2m s  associated with the modulation index m and the signal power 2s  is much less than unity, 

the noise figure FAM deteriorates further as the percentage of power wasted in the carrier 
increases.  As a result, AM broadcasters attempt to use the largest possible modulation indexes 
short of saturating the transmission system, whereupon the system is overmodulated, as 
suggested in Figure 4.7-3(a), and serious distortion results. 

Figure 4.7-4:  Amplitude modulation phasors in the limit of small S/N. 

 In addition to the distortion associated with possible overmodulation, AM systems also 
suffer distortion at low signal-to-noise ratios, as suggested in Figure 4.7-4 where the noise phasor 
n(t)  is large compared to the received signal vector.  The envelope detector again recovers the 
superposition of noise plus a signal term. 

   c nOutput noise A m s(t)cos (t)  (4.7.12) 

where the signal term is now multiplied by cos n(t).  Since n(t) varies randomly over 2 , this 
zero-mean multiplicative noise completely destroys the intelligibility of the received signal.  In 
order for intelligibility to be preserved in AM systems, we want the input signal-to-noise ratio to 
be greater than approximately 10 dB, the AM threshold.

 A third important class of modulation schemes differs from the foregoing in two important 
ways.  First, the amplitude of the carrier remains constant and conveys no information, and 
secondly, the bandwidth of the transmitted signal can exceed the bandwidth of the original input.  
Both phase modulation (PM) and frequency modulation (FM) are of this type, although 
bandwidth expansion is usually restricted to FM.  For both PM and FM the transmitted signal 
x(t) is given by 

   c cx(t) A cos t (t)   (4.7.13) 

where the signal phase (t) is directly proportional to the input signal s(t) for phase modulation.  
The signal phase for PM is 

 Ac[1 + m s(t)] cos n(t)
n(t)

n(t)

Im{Y}

Re{Y}

Ac[1 + m s(t)]

n(t)
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   (t) K 's(t)   (4.7.14) 

For FM the phase is proportional to the integral of the input signal: 

t
(t) 2 K s d   (4.7.15) 

For FM the frequency offset f from the nominal carrier frequency is therefore directly 
proportional to the input signal s(t).  This frequency offset in radians per second equals 
d dt 2 Ks(t) .  A typical FM or PM waveform is illustrated in Figure 4.7-5 together with a 
typical receiver. 

Figure 4.7-5:  FM/PM signal and receiver. 

 After amplification the receiver selects the band of interest and limits its amplitude to a 
constant in one of several possible ways.  This limiting process makes FM systems more immune 
to channel fading and to static and other forms of burst noise.  Its output is a sinusoid of slowly 
varying frequency which passes to the discriminator, the output of which, vo, is frequency 
dependent, as suggested in Figure 4.7-5(c).  In this case the output voltage from the discriminator 
vo is zero when the input frequency equals the carrier frequency, and is positive for frequencies 
above c and negative for frequencies below.  The output of the discriminator is low-pass 
filtered to obtain the desired bandwidth, which is adequate to represent the desired input signal. 
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Figure 4.7-6:  Spectra for FM and PM signals. 

 The bandwidth expansion properties of FM and PM are suggested in Figure 4.7-6, which 
shows how the input signal spectrum S(f) at baseband has a bandwidth of W Hz.  The received 
phasor Y(f )  is centered at a carrier frequency of c 2  Hz and has a total bandwidth B Hz.  

This total bandwidth B can be no less than 2W, and is given by 

   B 2W 1   (4.7.16) 

where

K W    (4.7.17) 

Thus the bandwidth B is roughly bounded by the limits 

   2W B 2W 1 2K   (4.7.18) 

where the FM bandwidth expansion factor * can vary between zero and factors of ten or more. 
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Figure 4.7-7:  FM/PM phasor for large signal-to-noise ratios. 

 Within the bandwidth of interest the received signal Y(t)  can be regarded as the phasor sum 

of the transmitted signal X(t)  and the phasor equivalent of the received noise rn(t).  How these 
phasors add for large signal-to-noise ratios is suggested in Figure 4.7-7, where the slowly 
varying received phasor Y(t)  approximately equals the transmitted slowly varying phasor X(t) .

These phasors are defined so that cj ty(t) Re Y(t)e , and cj tx(t) Re X(t)e .

 For both PM and FM systems, the desired phase (t), from which we recover the original 
input signal s(t), is corrupted by additive noise to yield a total phase (t), where 

   n n s

c c

r (t)sin n (t)
(t) (t) (t)

A A
 (4.7.19) 

 The recovered signal for a PM system is simply related to (t) as 

   s cv(t) (t) K s(t) n (t) A'  (4.7.20) 

and the recovered output voltage for FM receivers is 

   s cv(t) d (t) dt 1 2 Ks(t) dn dt 1 2 A  (4.7.21) 

where we recall 

   
td d d

2 K s(t)dt 2 Ks(t)
dt dt dt

 (4.7.22) 
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   c c s cn(t) n (t)cos t n (t)sin t  (4.7.23) 

   2 2 2
c s on (t) n (t) n (t) 2N B   (4.7.24) 

where we have normalized the noise power spectral density No to equal kTR/2.

 The output signal-to-noise ratio for PM systems can be found from (4.7.20) by taking the 
ratios of the signal and noise powers.  That is, 

   
2 2 2

2 2out c
2 2out os c

S K s (t) A 2
K s (t)

N 2N Wn (t) A

' '  (4.7.25) 

where we note 2
s o on (t) 2N B 4N W  if B = 2W.  More generally, for PM, B ~ 2 K 1 W' .

Thus to maximize the signal-to-noise ratio for PM, we want to maximize the carrier power and 
the phase gain K ' relative to the noise power spectral density No and the input signal bandwidth 
W.  However, as K '  increases, PM systems increasingly resemble FM. 

 The output signal-to-noise ratio for FM systems can be similarly found using (4.7.21); 

   
2

22 2out s
c

out

S dn (t)
K s (t) 2 A

N dt
 (4.7.26) 

where we now need to evaluate the square of the time derivative of the noise, dn/dt.  The average 
value of this term can be evaluated most easily by transforming to the spectral domain and 
integrating, using Parseval’s theorem, which says that power computed in the time domain must 
equal power computed in the spectral domain.  Since sn (t)  and sN (f )  constitute a Fourier 

transform pair, it follows that sdn (t) dt  and sj N (f )  also constitute a Fourier transform pair.  

The corresponding noise power spectral density is 2 22
osN (f ) 2 f 2N  since sN (f )  is flat 

over a band of B Hz.  Thus the noise power spectrum increases with the square of the frequency 
deviation from the carrier frequency, as suggested in Figure 4.7-8, and the denominator of 
(4.7.26) can be computed by integrating over the spectral domain. 
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Figure 4.7-8:  FM spectrum. 
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so that the output signal-to-noise ratio for an FM system is 
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 (4.7.28) 

where the CNR here is c oP 2BN , and B 2W .  In the wideband limit, sometimes called 

wideband FM (WBFM), the output signal-to-noise ratio becomes 

   2out out

out outWBFM DSBSC

S S
3

N N
 (4.7.29) 

which reveals the significant advantages of FM over the highly efficient DSBC system for which 

the output signal-to-noise ratio 2
out out c oS N P s 2N W .  For conventional FM radios with 

channel bandwidths of roughly 200 kHz, the FM signal-to-noise ratio advantage is 

approximately 2 23 3 5 19  dB. 

 Further improvement in FM systems can be obtained with pre-emphasis and de-emphasis 
filters which amplify the input signal power roughly in proportion to its frequency deviation 
from zero and, more specifically, in proportion to the f2 dependence of the noise; this pre-
emphasis can be compensated at the receiver, suppressing some of the noise.  Substantial 
improvements (perhaps 10 dB) in the output signal-to-noise ratio can be achieved in this way. 

f
2W



233

Figure 4.7-9:  FM phasors below the FM threshold. 

 As is the case of AM, there is a signal level below which FM systems fail to deliver 
intelligible signals; this is called the FM threshold.  The phasor diagram for the low SNR limit, 
analogous to Figure 4.7-7, is shown in Figure 4.7-9, where the signal carrier Ac is smaller than 
the noise phasor rn(t).  In this case the phase angle we detect (t) has a contribution which 
obliterates the desired signal (t) because n varies randomly over 2  radians: 

   c
n n

n

A
(t) sin

r
  (4.7.30) 

So destructive is n that we must have carrier amplitudes much larger than the noise phasors, and 
the input signal-to-noise ratio must generally exceed 10 – 20 dB. 

 This FM threshold effect is illustrated in Figure 4.7-10, where the effective output signal-to-
noise ratio is seen to substantially exceed that of the baseband signal-to-noise ratio as 
increases, but this benefit is achieved only as the baseband signal-to-noise ratio rises above the 

FM threshold, which increases as  increases.  These improvements in output signal-to-noise 
ratio as the bandwidth increases are analogous to the bandwidth-expansion channel-coding 
techniques discussed for digital systems in Section 4.5. 

(t) n(t)
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Figure 4.7-10:  FM output SNR as a function of .

4.8 COMMUNICATIONS SYSTEM DESIGN 

 Communications system design is bounded by constraints such as risk, time, signal power, 
receiver noise tolerance, cost and availability of technologies and bandwidth, and many others.  
In addition, these designs are driven by user requirements which vary considerably from case to 
case.  For example, audio user requirements can range from low SNR to high SNR, and the 
desired dynamic range may also vary.  In general, AM quality often provides ~25-35 dB output 
signal-to-noise ratios, which is satisfactory for voice communications, broadcast news, and 
similar purposes.  FM-quality signals suitable for music and pleasant listening generally have 
SNR’s on the order of 50 dB.  Still higher audio quality might lead to a requirement for 55 dB 
SNR accompanied by 40 dB dynamic range, for a total SNR of 95 dB.  The number of 
quantization levels required to yield 95 dB is approximately given by 

95 20L ~ 10 ~ 56,000 , where  for uniform quantization is 0.512 0.29  levels.  This can 
be accommodated by a linear fifteen-bit quantizer having 32,000 levels, such as those used for 
recording music CD’s. 

 Video quality is ~40-dB SNR (referenced to the maximum signal amplitude) in typical 
broadcast studios, and ranges from 20-35 dB in most homes with NTSC television receivers 
receiving over-the-air signals. 

 Bandwidth requirements for audio and video services also vary substantially.  Intelligible 
voice generally requires 3-kHz bandwidth, and 6 kHz gives excellent service.  Music can range 
to 15 kHz and more, where some young people can hear signals to 20 kHz.  NTSC analog video 
and digitally coded high-definition video (HDTV) can each be transmitted in a 6-MHz 
bandwidth.  Data requirements can range from fractions of a bit per second to millions or even 
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billions.  Many applications are comfortably satisfied with ~10 kbps, compatible with our 
pervasive analog telephone system, and many more are satisfied by one form of digital telephone 
service, 136-kbps Integrated Services Digital Network—ISDN—with 2 B + D = 2  64 kbps 
plus 8 kbps = 136 kbps full duplex (2 way).  Even so, many consumers opt for still higher rates 
on cable TV or other wideband networks. 

 Source coding can reduce the data rate associated with these various types of signals, with 
greater compression often entailing some loss of signal quality.  For example, uncompressed 
voice can be communicated well at 32-64 kbps, where 64 kbps might correspond to sampled 
voice at 8 kHz and 8 bits (~58 dB SNR).  Compressed voice has been produced at data rates 
ranging between 9.6 kbps for high-quality voice down to 1.2 kbps for degraded services which 
still permit some speaker identification. 

 High-quality music uncompressed is comfortably accommodated at 1.5 Mbps, 
corresponding to two-channel stereo recorded with fifteen-bit accuracy and 40-kHz sampling, for 
example.  Comparable music quality can be obtained with digital compression techniques that 
reduce the data rate to ~128 kbps; the losses are not perceptible to many listeners. 

 Standard NTSC video cameras convey approximately 5002 pixels per frame at ~30 frames 
per second, where each frame consists of two fields at intervals of ~1/60 sec; one field conveys 
the even-numbered lines and the other conveys the odd-numbered lines.  Because of the high 
degree of correlation between successive frames, such video data can be compressed with little 
degradation to 6 Mbps using motion-compensated inter-frame prediction together with lossy 
adaptive transform coding.  Further reduction to ~1.5 Mbps yields video quality comparable to 
that of today’s home VHS video cassette recorders or DVD players.  For video conferencing 
purposes, a talking head imbedded in a stationary background can be satisfactorily coded using 
the same techniques at 384 kbps, and useful performance is obtained at 128 kbps, but artifacts 
are evident when the speakers move too rapidly.  Acceptable color video can be coded at 56 
kbps, and even 9.6 kbps yields a recognizable talking head, although somewhat jerky, blurred, 
and noisy, or presented in cartoon-like fashion, or in two levels—black and white. 

 Depending on the entropy of the data streams, typical applications can usually support 
lossless coding techniques yielding data rate reductions of a factor 2-4.  In some cases where the 
data entropy is high, no useful compaction can be achieved, and in other cases where the data is 
highly redundant and only occasional transients are of interest, orders of magnitude improvement 
can be achieved. 

 As discussed earlier in Section 4.6, communication channels suffering from fading and burst 
noise can be significantly improved by digital coding and diversity in time, space, or 
polarization.  Fading and burst noise can also be combated by interleaving the data stream and by 
error correction codes, yielding coding gains which can range to 10 dB and more. 



236

Example 4.8.1 

 For music we desire S/N = 50 dB at the output.  If bandwidth is free, what minimum 
received signal power and bandwidth is required for a baseband bandwidth of 20 kHz and a 
receiver noise temperature of 1000K? 

 Solution: 

 The desired S/N is enough larger than typical FM thresholds of 15 dB that wideband FM is 

appropriate, where  is chosen to leave some margin above the threshold, say 5 dB.  Equation 

(4.7.29) suggests that 23  should be 5~ 10 400  where 510  is 50 dB and o oS N  is 

approximately 400 (26 dB, or 5 dB over the FM threshold; see Figure 4.7-10).  Therefore, 

9 .

 If 2
DSBSC c oS N 400 26 dB P s 2N W , where W = 20,000, o RN kT 2 , and 

2s 0.5 , then: 

c oP 2N W 400 0.5 23 42 1.38 10 1000 2 2 10 400 0.5 132.2 10 watts.

The bandwidth needed is roughly 2W 1 400  kHz, from (4.7.16). 


