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Problem 3.1 

a) 	 The solution follows the course notes.  Part (a) is (2.2.33) where we compute 
E[wxyz] = E[wx] E[yz] + E[wy] E[xz] + E[wz] E[xy], where w, x, y, and z 
correspond to na1 + S1/20.5, nb1 + S1/20.5, na2 + S2/20.5, and nb2 + S2/20.5, respectively. 

b) The solution, (2.2.34), follows directly from (2.2.33) by noting the Fourier transform 
of multiplication is convolution (*). 

c) The signal and noise power density spectra have the same form: B 
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where the magnitude is kTA /2 and kTR/2 for signal and noise, 
respectively. All three graphs for Φs(f) * Φs(f)/2, Φs(f) * Φn(f), 
and Φn(f) * Φn(f) have the same form, but with different magnitudes 
at the origin: they are (kTA)2B/4, k2TATBB/2, and (kTR)
respectively. In addition, the s x s term has an impulse at the origin 0 2B 

 of magnitude (kTsB)2/4.  

d) The output power spectral density Φo(f) = |H(f)|2Φm(f), where the components of 
Φm(f) are sketched in part (c). 
The output DC power is in the s x s impulse at f = 0, times |H(f=0)|2, 

 where |H(f=0)|2 = (∫h(t)dt)2 = (Aτ)2 by Parseval’s theorem.  Thus 
PDC = (kTAB)2(Aτ)2 /4 
The AC power is limited to a very narrow bandwidth (~1/τ Hz) determined by H(f), 
so only the power spectral densities near the origin are relevant here; these are given 
in part (c) above. To integrate over frequency to obtain the total AC power we sum 
the powers near zero frequency and multiply by ∫|H(f)|2df = ∫h2(t)dt = A2τ by 
Parseval’s theorem.  Thus 
PAC = A2τ[(kTA)2B/4 + k2TATBB/2 + (kTR)2B/2] 

0.5/[∂(PDC
0.5e) ∆Trms = (PAC) ) /∂TA] where the AC and DC powers were found in (d). 

2(PAC)0.5 = kTeffA(Bτ)0.5/2 where Teff
2 = TA

2 + 2TATR + 2TR 

(PDC)0.5 = kTABAτ/2, so 
∆Trms = Teff/(Bτ)0.5 

Problem 3.2 

a) We wish to use only the spectrum below 10 MHz, so the 1000 spectral samples 
are each 10 kHz wide (nominally).  If there were no aliasing (implying perfect boxcar 
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filtering) and no apodization, then 1000 sample delays in the shift register are necessary 
to yield 1000 independent power spectral densities.  However, the aliasing resulting from 
the given non-ideal 10-MHz filter requires us to increase the sampling frequency so the 
1-MHz sidelobe region (see Figure in problem) does not fall inside the desired aliasing-
free central 10-MHz region. If we set the sampling frequency = 21 MHz, then the result 
is as illustrated and as desired. 

b) If we further apodize the observed autocorrelation function of the signal, then 
proportionally still more taps are required to preserve 1000 independent spectral 
intervals; the number of taps must therefore be further increased by a factor of 1.4 (given 
in the problem).  Thus the total required number of taps, or stages in the shift register, is: 
1000 x 1.05 x 1.4 = 1470. 

Problem 3.3 

a) 	 Assume the Thevenin source has voltage Vs in series with Rs + jXs, and the load 
voltage and current are V and I, respectively.  The average power P dissipated in the 
load resistor R is: 

P = 0.5 Re{VI*} 
= 0.5 Re {[Vs(R + jX)]/[(R + Rs) + j(X + Xs)] × Vs*/[(R + Rs) − j(X + Xs)]} 
= 0.5|Vs|2 Re{(R + jX)/[(R + Rs)2 + (X + Xs)2]} 

∂P/∂ x  = 0 ⇒ X = -Xs and 
∂P/∂R = 0 = 0.5|Vs|2 ∂[R/(R + Rs)2]/∂R → ∂[R/(R + Rs)2]/∂R = 0 ⇒


 (R + Rs)-2 + R(-2)(R + Rs)-3 = 0 ⇒

 R + Rs -2R = 0 ⇒ R = Rs  Q.E.D. 


b) 
e as RL→ R, Ge → 1 as RL → 0, ∞, and G ≅ 100 for RL ≅ 1.11R Therefore G → ∞

Ge = |Γ|2 = |(ZLn - 1)/( ZLn + 1)|2 = |(-RL - R)/(-RL + R)|2 where ZLn = -RL/R 

The combination of a negative resistance amplifier and a 3-port circulator behaves 
like a normal amplifier with positive resistance. 
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