
AK Steel Di-Max M-19 Fully Processed .014 inch (.36 mm, 29 gauge)

Summary Graphs

Lamination Steels Main Menu

Summary Graphs

Magnetization curves for this material, DC through 2000 hertz All non-oriented silicon steels All other materials Total core loss curves for this material, 50 through 2000 hertz All non-oriented silicon steels All other materials

Summary magnetization and total core loss curves for as-sheared .014 inch (.36 mm, 29 gauge) Di-Max M-19 fully processed cold-rolled non-oriented silicon steel showing their relation to these properties for other materials found in *Lamination Steels Third Edition*. See the following pages for detailed graphs and data values.

Producer: AK Steel, Middletown, Ohio, USA, www.aksteel.com.

Primary standard: ASTM A677 36F155.

Information on this page is not guaranteed or endorsed by The Electric Motor Education and Research Foundation. Confirm material properties with material producer prior to use. © 2007 The Electric Motor Education and Research Foundation. MIT OCW excerpts prepared October 2008.

This and the following five pages are excerpted from the Laminations Steels Third Edition CD-ROM published by the Electric Motor Education and Research Foundation and are intended for use in the Massachusetts Institute of Technology OpenCourseWare program. Unauthorized duplication and distribution of this document in violation of the OpenCourseWare license is prohibited. Incorporation of this information in other publications or software, in whole or in part, in violation of the OpenCourseWare license or without specific authorization from Electric Motor Education and Research Foundation, is prohibited.

Courtesy of the Electric Motor Education and Research Foundation. Used with permission.

Please use the following citation when referring to these pages:

Sprague, Steve, editor. 2007. Lamination Steels Third Edition, A Compendium of Lamination Steel Alloys Commonly Used in Electric Motors. South Dartmouth, Massachusetts: The Electric Motor Education and Research Foundation. CD-ROM. Non-Oriented Silicon Steels: AK Steel Di-Max M-19, Fully Processed, .014 inch (.36 mm, 29 gauge), MIT OCW Excerpts.

Lamination Steels Third Edition is © 2007 by the Electric Motor Education and Research Foundation; ISBN 0971439125. Information about the complete CD-ROM can obtained from:

The Electric Motor Education and Research Foundation, Post Office Box P182, South Dartmouth, Massachusetts 02748 USA tel: 508.979.5935 fax: 508.979.5845 email: info@smma.org www.smma.org

Total Core Loss – Pc vs. B

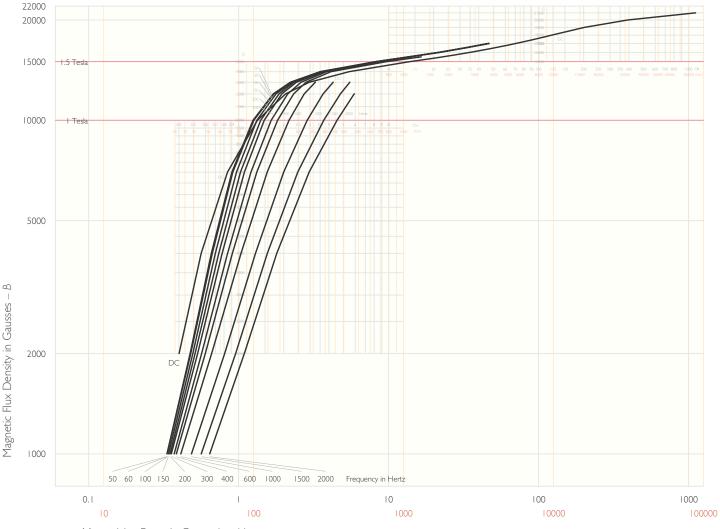
5000

Magnetic Flux Density in Gausses - B

AK Steel Di-Max M-19 Fully Processed .014 inch (.36 mm, 29 gauge)

Magnetization Curves

Oriented Silicon Steel Menu Non-Oriented Silicon Steels


Menu 🕨

Lamination Steels

EMERF

 $L \cdot S \cdot T \cdot E$

Main Menu

Magnetizing Force in Oersteds -HMagnetizing Force in Amperes per Meter -H

Magnetization -B vs. H – by Frequency

Typical DC and derived AC magnetizing force of as-sheared .014 inch (.36 mm, 29 gauge) Di-Max M-19 fully processed cold-rolled non-oriented silicon steel. See magnetization data page for data values. DC curve developed from published and AC curves from previously unpublished data for Di-Max M-19 provided by AK Steel, 2000. AC magnetization data derived from exciting power data; see exciting power data page for source data and magnetization data page for conversion information. Chart prepared by EMERF, 2004. Information on this page is not guaranteed or endorsed by The Electric Motor Education and Research Foundation. Confirm material properties with material producer prior to use. © 2007 The Electric Motor Education and Research Foundation. MIT OCW excerpts prepared October 2008.

This page is excerpted from the Laminations Steels Third Edition CD-ROM published by the Electric Motor Education and Research Foundation and is intended for use in the Massachusetts Institute of Technology OpenCourseWare program. Unauthorized duplication and distribution of this document in violation of the OpenCourseWare license is prohibited. Please refer to the Summary Graphs page, reached by the link at left, for additional information concerning this document.

Magnetization -B vs. H

AK Steel				DC and Derived AC Magnetizing Force in Oersteds and Amperes per Meter at Various Frequencies – H Oe Am											
Di-Max M-19				DC	50 Hz	60 Hz	100 Hz	150 Hz	200 Hz	300 Hz	400 Hz	600 Hz	1000 Hz	1500 Hz	2000 Hz
Fully Processed .014 inch		đ	1000		0.333 26.5	0.334 26.6	0.341 27.1	0.349 27.8	0.356 28.3	0.372 29.6	0.385 30.6	0.412 32.8	0.485 38.6	0.564 44.9	0.642 51.1
(.36 mm, 29 gau	ge)		2000	0.401 31.9	0.475 37.8	0.480 38.2	0.495 39.4	0.513 40.8	0.533 <mark>42.4</mark>	0.567 <mark>45.</mark> 1	0.599 47.7	0.661 52.6	0.808 64.3	0.955 <mark>76.0</mark>	1.09 <mark>86.9</mark>
		Gausses	4000	0.564 44.9	0.659 <mark>52.4</mark>	0.669 53.2	0.700 55.7	0.739 <mark>58.8</mark>	0.777 61.8	0.846 67.3	0.911 72.5	1.04 <mark>82.8</mark>	1.30 103	1.56 <mark>124</mark>	1.80 143
Magnetization Data			ارک 1000 م	0.845 67.3	0.904 71.9	0.916 72.9	0.968 77.0	1.03 <mark>82.0</mark>	1.09 <mark>87.1</mark>	1.21 96.4	1.33 105	1.55 <mark>124</mark>	2.00 159	2.48 198	2.95 235
				1.34 106	1.25 <mark>99.3</mark>	1.26 101	1.32 105	1.40 112	1.48 118	1.65 131	1.82 <mark>145</mark>	2.17 173	2.87 228	3.70 <mark>294</mark>	4.53 <mark>36</mark> 1
Summary Graph	s 🕨	2	12000	2.06 164	1.71 136	1.72 137	1.78 4	1.86 148	1.94 155	2.13 169	2.33 185	2.74 218	3.66 291	4.77 380	5.89 469
Magnetization Curves			13000	2.95 235	2.21 1 <mark>76</mark>	2.22 177	2.27 181	2.34 186	2.42 193	2.61 208	2.82 <mark>224</mark>	3.24 <mark>258</mark>	4.27 <mark>340</mark>	5.50 <mark>438</mark>	
Core Loss		Σ	14000	5.47 <mark>435</mark>	3.51 279	3.51 279	3.57 <mark>284</mark>	3.63 <mark>28</mark> 9	3.69 <mark>294</mark>	3.86 <mark>307</mark>	4.13 329				
Curves Data			15000	13.9 1109	8.28 659	8.31 662	8.37 <u>666</u>	8.37 <u>666</u>	8.48 675	8.65 <u>689</u>	9.74 775				
Exciting Power			15500	22.8 1813	13.6 1084	13.6 1081	13.8 1095	13.7 1092	13.8 1096	14.1 1122	16.5 1313				
Data			16000	35.2 2802	21.6 1718	21.7 1728	21.8 1735	21.8 1738	21.9 1742						
Spreadsheet			16500	50.9 <mark>4054</mark>	32.4 2577	32.5 2587	32.6 2597	32.5 2590	32.6 2594						
Other Thickness	ses		17000	70.3 5592	46.1 3670	46.2 <u>3680</u>	46.4 3692	46.6 3712	46.6 3711						
.0185 inch .025 inch			18000	122 <mark>9711</mark>											
AK Steel			19000	202 16044											
Product Info			20000	394 31319											
			21000	1112 88491											

DC and Derived AC Magnetizing Force in Oersteds and Amperes per Meter at Various Frequencies -H

Typical DC and derived AC magnetizing force of as-sheared .014 inch (.36 mm, 29 gauge) Di-Max M-19 fully processed cold-rolled non-oriented silicon steel. DC values in Oersteds from published AK Steel documents. AC values in Oersteds developed from previously unpublished exciting power information provided by AK Steel, 2000. AC values have been derived from RMS Exciting Power using the following formulas:

 $88.19 \times \text{Density}$ (g/cc) $\times \text{RMS}$ Exciting Power (VA/lb) Magnetizing Force in Oersteds = Magnetic Flux Density (kG) \times Frequency (Hz) Density of M-19 = 7.65 g/ccValues in Amperes per meter = Oersteds \times 79.58

See exciting power data page for AC exciting power source data. Magnetizing force formula developed by AK Steel; use only for deriving magnetizing force of AK Steel nonoriented silicon steel. Data table preparation, including conversion of data values, by EMERF, 2004.

Information on this page is not guaranteed or endorsed by The Electric Motor Education and Research Foundation. Confirm material properties with material producer prior to use. © 2007 The Electric Motor Education and Research Foundation. MIT OCW excerpts prepared October 2008.

This page is excerpted from the Laminations Steels Third Edition CD-ROM published by the Electric Motor Education and Research Foundation and is intended for use in the Massachusetts Institute of Technology OpenCourseWare program. Unauthorized duplication and distribution of this document in violation of the OpenCourseWare license is prohibited. Please refer to the Summary Graphs page, reached by the link at left, for additional information concerning this document.

AK Steel Non-Menu Non-Oriented

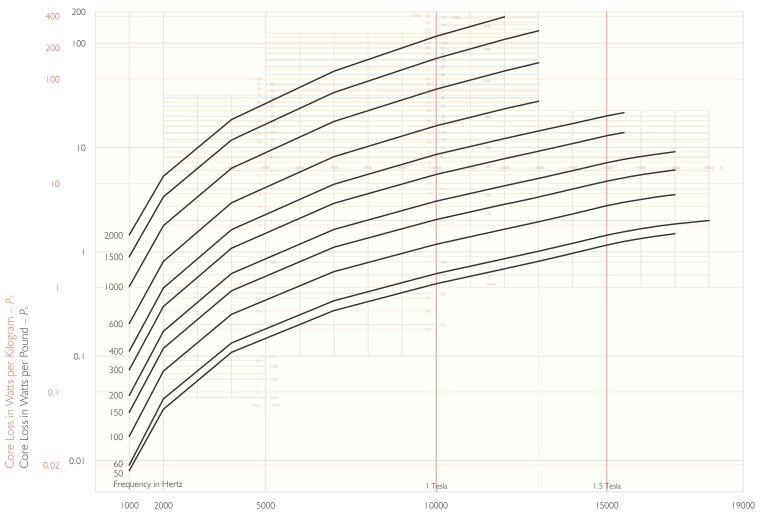
Menu

Main Menu ►

 $L \cdot S \cdot T \cdot E$

പ്

Core | Core |


AK Steel Non-Menu Non-Oriented Menu

Main Menu

EMERF

 $L \cdot S \cdot T \cdot E$

Total Core Loss $-P_c$ vs. B – by Frequency

Magnetic Flux Density in Gausses – B

Typical total AC core loss of as-sheared .014 inch (.36 mm, 29 gauge) Di-Max M-19 fully processed cold-rolled non-oriented silicon steel. See core loss data page for data values. Curves developed from previously unpublished information provided by AK Steel, 2000. Chart prepared by EMERF, 2004.

Information on this page is not guaranteed or endorsed by The Electric Motor Education and Research Foundation. Confirm material properties with material producer prior to use. © 2007 The Electric Motor Education and Research Foundation. MIT OCW excerpts prepared October 2008.

This page is excerpted from the Laminations Steels Third Edition CD-ROM published by the Electric Motor Education and Research Foundation and is intended for use in the Massachusetts Institute of Technology OpenCourseWare program. Unauthorized duplication and distribution of this document in violation of the OpenCourseWare license is prohibited. Please refer to the Summary Graphs page, reached by the link at left, for additional information concerning this document.

Total Core Loss – Pc vs. B

AK Steel				Core Loss W/lb W/kg	in Watts pe	er Pound and	d Watts per	Kilogram at	Various Fre	equencies –	Pc			
Di-Max M-19				50 Hz	60 Hz	100 Hz	150 Hz	200 Hz	300 Hz	400 Hz	600 Hz	1000 Hz	1500 Hz	2000 Hz
Fully Processed .014 inch		B	1000	0.008 0.0176	0.009 0.0198	0.017 0.0375	0.029 0.0639	0.042 0.0926	0.074 <mark>0.163</mark>	0.112 0.247	0.205 0.452	0.465 1.02	0.9 1.98	1.45 3.20
(.36 mm, 29 gaug	ge)	Gausses -	2000	0.031 0.0683	0.039 0.0860	0.072 0.159	0.119 0.262	0.173 0.381	0.300 <mark>0.66</mark> 1	0.451 0.994	0.8121.79	1.79 3.94	3.37 7.43	5.32 11.7
			4000	0.109 0.240	0.134 0.295	0.252 0.555	0.424	0.621 1.37	1.09 2.39	1.64 <u>3.60</u>	2.96 6.52	6.34 14.0	11.8 26.1	18.5 40.8
Core Loss Data		Density in	7000	0.273 0.602	0.340 <mark>0.74</mark> 9	0.647 1.43	1.11 2.44	1.64 3.61	2.92 <u>6.44</u>	4.45 9.81	8.18 18.0	17.8 <mark>39.1</mark>	33.7 74.3	54.0 119
		Den	10000	0.494 1.09	0.617 1.36	1.18 2.61	2.04 4 .50	3.06 <u>6.74</u>	5.53 12.2	8.59 18.9	16.2 <u>35.7</u>	36.3 <mark>80.0</mark>	71.5 1 <mark>58</mark>	117 257
Summary Graph	s 🕨	Flux	12000	0.687 1.51	0.858 1.89	1.65 3.63	2.86 6.30	4.29 9.46	7.83 17.3	12.2 26.9	23.5 51.8	54.3 120	109 240	179 395
Magnetization Curves		Magnetic	13000	0.812 1.79	1.01 2.23	1.94 4.28	3.36 7.41	5.06 11.2	9.23 20.3	14.4 31.8	27.8 61.3	65.1 1 <mark>43</mark>	132 29 1	
Data		Z	14000	0.969 2.14	1.21 2.66	2.31 5.09	4.00 8.82	6.00 13.2	10.9 24.1	17.0 37.5				
Core Loss Curves			15000	1.16 2.56	1.45 3.19	2.77 6.11	4.76 10.5	7.15 15.8	13.0 28.7	20.1 44.4	_			
Exciting Power			15500	1.26 2.77	1.56 3.44	2.99 6.59	5.15 11.4	7.71 17.0	13.9 30.7	21.6 47.6				
Data			16000	1.34 2.96	1.67 3.67	3.18 7.01	5.47 12.0	8.19 18.0						
Spreadsheet			16500	1.42 3.13	1.76 3.89	3.38 7.44	5.79 12.8	8.67 19.1						
Other Thickness			17000	1.49 3.29	1.85 4.08	3.54 7.80	6.09 13.4	9.13 20.1						
.0185 inch .025 inch			18000		2.00 4.40									
AK Steel										fully processed				

Iypical total AC core loss of as-sheared .014 inch (.36 mm, 29 gauge) Di-Max M-19 tully processed cold-rolled non-oriented silicon steel. Watts per polvalues from previously unpublished information provided by AK Steel, 2000. Data table preparation, including conversion of data values, by EMERF, 2004.

Watts per kilogram values developed using this formula: Watts per Kilogram = Watts per Pound \times 2.204 .

Information on this page is not guaranteed or endorsed by The Electric Motor Education and Research Foundation. Confirm material properties with material producer prior to use. © 2007 The Electric Motor Education and Research Foundation. MIT OCW excerpts prepared October 2008.

This page is excerpted from the Laminations Steels Third Edition CD-ROM published by the Electric Motor Education and Research Foundation and is intended for use in the Massachusetts Institute of Technology OpenCourseWare program. Unauthorized duplication and distribution of this document in violation of the OpenCourseWare license is prohibited. Please refer to the Summary Graphs page, reached by the link at left, for additional information concerning this document.

Product Info

AK Steel Non-

Non-Oriented Silicon Steels Menu

Lamination Steels Main Menu

Menu

Exciting Power

AK Steel			Exciting Power in Volt-amps per Pound and Volt-amps per Kilogram at Various Frequencies												
Di-Max M-19				50 Hz	60 Hz	100 Hz	150 Hz	200 Hz	300 Hz	400 Hz	600 Hz	1000 Hz	1500 Hz	2000 Hz	
Fully Processed .014 inch			000	0.025 0.055	0.030 0.066	0.051 0.112	0.078 0.172	0.106 0.234	0.165 0.364	0.228 0.503	0.366 0.807	0.719 1.58	1.25 2.76	1.90 4.20	
(.36 mm, 29 gauge)		Ses 20	000	0.07	0.085 0.187	0.147 0.324	0.228 0.503	0.316 0.696	0.504 .	0.710 1.56	1.18 2.59	2.40 5.28	4.25 9.36	6.48 14.3	
Fueltine Device		\cup	000	0.195 0.430	0.238 0.525	0.415 0.915	0.657 1.45	0.921 2.03	1.51 3.32	2.16 4.76	3.70 <mark>8.15</mark>	7.70 17.0	13.9 30.5	21.4 47.1	
Exciting Power Data		sity in	000	0.469 1.03	0.57 .26	1.00 2.21	1.60 3.53	2.27 5.00	3.77 <mark>8.3</mark> 1	5.50 12.1	9.67 21.3	20.8 45.7	38.7 <mark>85.2</mark>	61.3 135	
		Density 10	000	0.925 2.04	1.12 2.48	1.96 4.32	3.12 6.88	4.39 9.68	7.33 16.2	10.8 23.8	19.3 42.5	42.5 93.7	82.2 181	134 296	
Summary Graphs 🕨			000	1.52 3.34	1.83 4.04	3.16 6.96	4.96 10.9	6.91 15.2	11.4 25.0	16.6 36.5	29.2 64.4	65.1 143	127 280	210 462	
Magnetization Curves		Magnetic 13(000	2.13 4.69	2.57 5.66	4.38 9.65	6.77 14.9	9.34 20.6	15.1 33.2	21.7 47.8	37.5 82.7	82.3 81	159 350		
Data		Σ 140	000	3.64 8.02	4.37 9.63	7.41 16.3	11.3 24.9	15.3 33.8	24.0 52.9	34.3 75.6					
Core Loss Curves		150	000	9.20 20.3	11.1 24.4	18.6 41.0	27.9 61.5	37.7 <mark>83.</mark> I	57.7 127	86.6 191					
Data		15	500	15.6 34.5	18.7 41.3	31.6 69.6	47.3 104	63.3 140	97.2 214	152 334					
Spreadsheet	•	160	000	25.6 56.4	30.9 <mark>68.</mark> 1	51.7 114	77.7 171	104 229							
Other Thicknesses		16	500	39.6 87.3	47.7 105	79.8 176	119 263	159 351							
.0185 inch .025 inch		7(000	58.1 128	69.9 154	117 258	176 389	235 518							

Typical RMS Exciting Power of as-sheared .014 inch (.36 mm, 29 gauge) Di-Max M-19 fully processed cold-rolled non-oriented silicon steel. Volt-amps per pound values from previously unpublished information provided by AK Steel, 2000. Data table preparation, including conversion of data values, by EMERF, 2004.

Volt-amps per kilogram developed using this formula: Volt-amps per kilogram = Volt-amps per pound \times 2.204 .

Information on this page is not guaranteed or endorsed by The Electric Motor Education and Research Foundation. Confirm material properties with material producer prior to use. © 2007 The Electric Motor Education and Research Foundation. MIT OCW excerpts prepared October 2008.

This page is excerpted from the Laminations Steels Third Edition CD-ROM published by the Electric Motor Education and Research Foundation and is intended for use in the Massachusetts Institute of Technology OpenCourseWare program. Unauthorized duplication and distribution of this document in violation of the OpenCourseWare license is prohibited. Please refer to the Summary Graphs page, reached by the link at left, for additional information concerning this document.

AK Steel

Product Info

AK Steel Non-

Non-Oriented

Main Menu

Menu

Menu

MIT OpenCourseWare http://ocw.mit.edu

6.685 Electric Machines Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.