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Problem 1: Variable Reluctance Motor 

Much of the solution to this problem is keeping track of where the inductance is varying. 
Note for some value of flux λ, if λ < Is, then: 

L(θ) 

λ 
I = 

L(θ) 

′ W =
1 
L(θ)I2 

m 2 
I2 ∂L 

Te = 
2 ∂θ 

If the flux is greater than that: 

λ L(θ) − Lmin I = + Is
Lmin Lmin 
1 ( )

′ W = I2 IsIm 2 s Lmin + L(θ) − Lmin

∂L 
Te = IIs 

∂θ 

The details are shown in the scripts attached. I do not presume to present these as mas
terpieces of slick programming, but they seem to work. A subroutine is used to present 
inductance and rate of change of inductance and then a second subroutine calculates current 
and torque, given flux, inductance and rate of change of inductance. Here are some pictures. 
First, Figure 1 shows the (unsaturated) inductance and rate of change of inductance as a 
function of rotor angle, for one stator pole. 

Next, Figure 2 shows current as a function of rotor position for several values of flux, from 
0.2 T to 2.0 T in increments of 0.2 T. This is computed easily as: 

λλi = if < Isat L(θ) L(θ) 
  

L(θ) λ = 1 − + otherwise Isat Lmin Lmin 

To obtain torque, we note that the magnetic coenergy is: 

′ 1 w = L(θ)i2 if 
λ 

< Isat m 2 L(θ) 
1L(θ)I2= 2 sat + L(θ) (i − Isat) otherwise 
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Figure 1: Inductance and rate of change of inductance vs. angle 

Then torque is: 

λ 
T e i2 ∂L = if < Isat 2 ∂θ L(θ) 

( )

= 1I2 ∂L otherwise Isati − 2 sat ∂θ 

This is shown in Figure 3 

To find average torque note there are three phases and four rotor poles, so there are 3×4 = 12 
cycles per revolution. Thus 

12 
< Te >= × W 

2π 
where W is work done per ’stroke’. We approximate this by: 

W = Tedθ ≈ TeΔθ 

and we have taken Δθ to be a suitably small value. Note we have used only the duration of 
one flux pulse to calculate this work. 

Finally, we have picked out two starting angles, one in the motoring range and one in the 
generating range and have plotted instantaneous flux, current and torque. Note that current 
in the winding is a positive number, but, particularly in generating operation, current may be 
freewheeling through the diodes back into the power supply, and so this current can appear 
to be negative to the supply. 
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Figure 2: Current vs. position with flux as a parameter 

Figure 3: Torque vs. position with flux as a parameter
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Problem Set 9, Problem 1 
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Figure 4: Average torque as a function of pulse start angle 

Figure 5: Motoring Operation 
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Problem Set 9, Problem 1: Motoring (one pulse only)
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Figure 6: Generating Operation 
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Problem Set 9, Problem 1: Generating (one pulse only)

F
lu

x,
 In

du
ct

an
ce

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

10

20

30

C
ur

re
nt

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−40

−20

0

20

T
or

qu
e

Angle



Problem 2: Damping
 

The objective here is to understand how to linearize the synchronous machine model, which 
is decidedly nonlinear (but not pathologically so). We seek a model that looks like this: 

2H d2δ dδ 
+ B = Te + Tm

ω0 dt2 dt 

considering only damping from the quadrature axis damper winding. If the torque angle is 
doing this: 

{ }

jΩtδ = δ0Re δ1e

then a damping torque would be produced: 

{ }dδ jΩt−B = Re −jΩBδ1edt 

The damper in question has the following state equation: 

dψkq 
= −ω0rkqikq 

dt 

The quadrature axis armature current and q-axis damper currents are: 

xkq xaq 
iq = ψq − ψkq 2 2x xxqxkq − aq xqxkq − aq 

xaq xq
ikq = − ψq − ψkq 2 2xqxkq − x xqxkq − xaq aq 

A little bit of manipulation is required to coerce the first of these into: 

′ ψq + ediq = 
′ xq 

where 
2x

′ 
xqxkq − aq 

x = q xkq 

Then, using the same notation, 

xaq ψq xq ψkq 
ikq − + 

x ′ x ′ xkq q xkq q 

if torque angle is varying as postulated above, the variation in flux is: 

ψq1 = −v sin δ0δ1 

The differential equation for damper flux becomes: 
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dψkq1 rkq xq rkq xaq 
+ ω0 ψkq1 = ω0 ψq1

dt xkq xkq xkq x ′ q 

Recognizing the damper time constant:
 

′ 
xkq 

Tkq = Tqo = 
ω0rkq 

The q- axis short circuit time constant is: 

′ x 
′ ′ q

Tq = Tqo xq 

The damper winding differential equation becomes, using complex notation: 

( )

′ 
xag 

jΩTq + 1 ψkq1 = ψq1 
xq 

This means that the voltage behind q- axis reactance is: 

2x
′ 

xaq aq ψq1 
e = − ψkq1 = −d1 ′ xkq xqxkq 1 + jΩTq 

The quadrature axis current variation is: 

′ 2eψq1 + dq ψq1 xaq ψq1
iq1 = = 1 − 

′ ′ ′ x x xqxkq 1 + jΩTq q q 

The first-order torque variation (at least the part that has damping in it will be: 

{ } 2 21 v cos2 δ0 xaq ψq1 
= Re ψdi 

∗ = Re 1 −T1 
2 q1 2 x ′ 1 + jΩT ′ q xqxkq q 

Matching terms, we get the equivalent of the damping coefficient: 

  
2 2 ′ 1 v cos2 δ0  xaq ΩTq 

ΩB = 
 ( )2 

2 x ′ q xqxkq ′1 + ΩTq

This at least has the right sign, indicating that there is positive damping, but it does not 
′have the right frequency dependence. It works only for values of ΩT < 1. q 
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Problem 3: Single Phase Motor
 

Essentially all of the story is told in the code here. I have set the motor up in the same way 
for both running and starting conditions. As in class, the starting condition involves this 
matrix equation: 

  
  jxφ jxφ   
V j(x1 + xφ) 0 2 Ia2 

 −xφ  
  xφ   
 V 



 0 Ze + j(x1 + xφ) 

 Ib  
 2 2 

 
  = xφ jxφ   

 jxφ r2  
 0  + 0  IF  

 2 2 2 s  
jxφ −xφ jxφ0 r2 IR0 +2 2 2 2−s 

The solution consists of evaluating this equation for the full range of slip, asking Matlab to 
solve it for IF and IR and then getting torque: 

p r2
T = |IF |

2 r2 − |IR|
2 

ω s 2 − s 

The impedance Ze is, respectively, that of a capacitance: 

1 
Ze = 

jωc 

or simply a resistance.
 

For the ’running’ condition, this same expression can be used, but without the line and column
 
that describe the starting winding. That is, strike the second row and second column of the
 
matrix.
 

The results are shown in Figure 7
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Script for Problem 1 

% 6.685 2013 Problem Set 11, Problem 1
 
% uses ssrmind.m and cur.m
 

global Ns Nr tho Lmax Lmin Isat
 

% variables
 
Ns = 6; % number of stator poles
 
Nr = 4; % number of rotor poles
 
Lmax = .30; % maximum inductance
 
Lmin = .075; % minimum inductance
 
tho = 9*pi/20; % overlap angle
 
Isat = 5; % saturation current (Kirtley’s trivial model)
 
lam_peak = 2; % operating maximum flux
 

% first, test inductance procedure
 
dth = pi/1200; % we will see dth again: a small angle
 
theta = -pi/2:dth:pi/2;
 
L = zeros(size(theta));
 
dL = zeros(size(theta));
 
for i=1:length(theta),
 

[L(i), dL(i)] = srmind(theta(i));
 
end
 

figure(1)
 
subplot 211
 
plot(theta, L)
 
title(’Problem Set 9, Problem 1’)
 
ylabel(’Inductance, Hy’)
 
axis([-pi/2 pi/2 0 0.5])
 
subplot 212
 
plot(theta, dL)
 
ylabel(’dL/dtheta’)
 
xlabel(’Angle, Radians’)
 
axis([-pi/2 pi/2 -1 1])
 

% now we compute current over a range of fluxes
 
lambda = 0.2:0.2:2; % given these values of flux
 

I = zeros(size(theta)); % placeholders
 
T = zeros(size(theta));
 

figure(2) % set up figures for the results
 
clf
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gle

hold on
 
figure(3)
 
clf
 
hold on
 

for	 k = 1:length(lambda),
 
lam = lambda(k);
 
for i = 1:length(theta),
 

[I(i), T(i)] = cur(L(i), dL(i), lam);
 
end
 
figure(2)
 
plot(theta, I)
 
figure(3)
 
plot(theta, T)
 

end
 

figure(2)
 
hold off
 
title(’Problem Set 9, Problem 1’)
 
ylabel(’Current, A’)
 
xlabel(’Angle, Radians’)
 
grid on
 

figure(3)
 
hold off
 
title(’Problem Set 9, Problem 1’)
 
ylabel(’Torque, N-m’)
 
xlabel(’Angle, Radians’)
 
grid on
 

% now that we know what is up, we construct a steady state waveform
 
% we use only one pulse of flux
 
theta_s = -pi/2:dth:0; % voltage pulse starts at these locations
 
theta_1 = -tho/2:dth:0; % angles of the voltage pulse: start
 
theta_2 = 0:dth:tho/2; % and finish
 
theta_v = [theta_1 theta_2]; % array of angles
 
lambda_1 = 2*lam_peak/tho .* (theta_1 + tho/2); % flux as a function of angle
 
lambda_2 = 2*lam_peak/tho .* (tho/2 - theta_2); % resulting from square voltage pulse
 
lambda_v = [lambda_1 lambda_2]; % this is the flux waveform
 
Tav = zeros(size(theta_s)); % placeholder for average torque
 
for it = 1:length(theta_s); % now sweep over starting angle
 

Lambda = zeros(size(theta)); % now we must have flux as function of rotor an
 
I_l = zeros(size(theta)); % and current
 
T_l = zeros(size(theta)); % and local torque
 
for il = 1:length(lambda_v), % this sets up flux waveform
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Lambda(it+il) = lambda_v(il); % which is zero outside this range
 
[I_l(it+il), T_l(it+il)] = cur(L(it+il), dL(it+il), lambda_v(il)); % bingo: all is do
 

end
 
Tav(it) = (.5*Ns*Nr/pi)*dth*sum(T_l); % and here we take the average
 

end
 

figure(4)
 
plot(theta_s, Tav)
 
title(’Problem Set 9, Problem 1’)
 
ylabel(’Average Torque’)
 
xlabel(’Starting Angle, Radians’)
 
grid on
 

% then we pick out a motoring and generating case
 
im = 200;
 

Lambda = zeros(size(theta));
 
I_l = zeros(size(theta));
 
T_l = zeros(size(theta));
 
for il = 1:length(lambda_v),
 

Lambda(im+il) = lambda_v(il);
 
[I_l(im+il), T_l(im+il)] = cur(L(im+il), dL(im+il), lambda_v(il));
 

end
 

figure(5)
 
subplot 311
 
plot(theta, L, theta, Lambda)
 
title(’Problem Set 9, Problem 1: Motoring (one pulse only)’)
 
ylabel(’Flux, Inductance’)
 
subplot 312
 
plot(theta, I_l)
 
ylabel(’Current’)
 
subplot 313
 
plot(theta, T_l)
 
ylabel(’Torque’)
 
xlabel(’Angle’)
 

ig = 450;
 
Lambda = zeros(size(theta));
 
I_l = zeros(size(theta));
 
T_l = zeros(size(theta));
 
for il = 1:length(lambda_v),
 

Lambda(ig+il) = lambda_v(il);
 
[I_l(ig+il), T_l(ig+il)] = cur(L(ig+il), dL(ig+il), lambda_v(il));
 

end
 
figure(6)
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subplot 311
 
plot(theta, L, theta, Lambda)
 
title(’Problem Set 9, Problem 1: Generating (one pulse only)’)
 
ylabel(’Flux, Inductance’)
 
subplot 312
 
plot(theta, I_l)
 
ylabel(’Current’)
 
subplot 313
 
plot(theta, T_l)
 
ylabel(’Torque’)
 
xlabel(’Angle’)
 

function [L, dL] = srmind(th)
 

% some horrible programming practice
 
global Ns Nr tho Lmax Lmin Isat
 
% returns VRM inductance
 
%Ns (not used) is number of stator poles
 
%Nr is number of rotor poles
 
%tho is overlap angle
 
% Lmax is max inductance
 
% Lmin is min inductance
 

thr = 2*pi/Nr; % repetition angle
 
th1 = tho/2; % Overlap angle
 
thd = thr/2-th1*(1-Lmin/Lmax); % angle over which L does not vary!
 
thz = thr/2-th1; % position of zero projection of L
 
thm = mod(th, thr); % angle with respect to primary
 
thp = abs(thr/2-thm); % variation angle
 
if thp<thd, % is the angle where L does not vary?
 

L = Lmin; % then we are at minumum inductance
 
else
 

L = Lmax*(thp-thz)/th1; % this works because there is no region of max inductance
 
end
 

% now to get derivative
 
thc1 = th1*(1-Lmin/Lmax); % lower corner
 
thc2 = thr-thc1; % upper corner
 

dLdt = Lmax/th1; % inductance slope
 
if thm < thc1, % where is angle with respect to corners?
 

dL = -dLdt; % if less than fiirst corner, slope is negative
 
elseif thm > thc2, % if greater than second corner it is positive
 

dL = dLdt;
 
else dL = 0; % or in the middle it is constant
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-------------------------

end
 

function [I,T] = cur(L, dL, lam)
 
global Ns Nr tho Lmax Lmin Isat
 

if lam/L < Isat,
 
I = lam/L;
 
T = .5*I^2 * dL;
 

else
 
I = lam/Lmin - Isat*(L/Lmin-1);
 
T = (Isat*I-.5*Isat^2)* dL;
 

end
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Script for Problem 3 

% 6.685 Problem Set 11, Problem 3
 
% single phase motor: starting and running
 

xm = 98; % magnetizing reactance
 
x1 = 1.25; % stator leakage
 
x2 = 0.75; % rotor leakage
 
r1 = 2.0; % stator resistance
 
r2 = 1.20; % rotor resistance
 

v = 120; % RMS stator voltage
 
p = 1; % pole pairs
 
om = 2*pi*60; % radian frequency
 
C = 50e-6; % starting capacitor
 
Ze = 1/(j*om*C); % impedance of starting capacitor
 
zer = 10; % split phase resistance for starting
 

% first, do the run case
 

S = logspace(-3, 0, 500);
 
N = (om*60/(2*pi)) .* (1-S);
 

Tr = zeros(size(S));
 
If = zeros(size(S));
 
Ir = zeros(size(S));
 
% running torque calculation
 
for k = 1:length(S)
 

s = S(k);
 
Ar = [j*x1+j*xm+r1 .5*j*xm .5*j*xm;
 

.5*j*xm j*x2+.5*j*xm+r2/s 0;
 

.5*j*xm 0 j*x2+.5*j*xm+r2/(2-s)];
 
V = [v 0 0]’;
 
I = Ar\V;
 
If(k) = I(2);
 
Ir(k) = I(3);
 
Tr(k) = (p/om) * (abs(If(k))^2 * r2/s - abs(Ir(k))^2 * r2/(2-s));
 

end
 

Ts = zeros(size(S));
 
Tsr = zeros(size(S));
 

% starting torque calculation: Capacitor Start
 
for k = 1:length(S)
 

s = S(k);
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As = [j*x1+j*xm+r1 0 .5*j*xm .5*j*xm;
 
0 Ze+j*x1+j*xm+r1 -.5*xm .5*xm;
 
.5*j*xm .5*xm .5*j*xm+r2/s 0;
 
.5*j*xm -.5*xm 0 .5*j*xm+j*x2+r2/(2-s)];
 

V = [v v 0 0]’;
 
I = As\V;
 
If(k) = I(3);
 
Ir(k) = I(4);
 
Ts(k) = (p/om) * (abs(If(k))^2 * r2/s - abs(Ir(k))^2 * r2/(2-s));
 

end
 
maxt = max(max(Tr), max(Ts));
 
figure(1)
 
plot(N, Tr, N, Ts)
 
title(’Single Phase Motor’)
 
ylabel(’Torque, N-m’)
 
xlabel(’Speed, RPM’)
 
axis([0 3600 0 1.1*maxt])
 
legend(’Running’, ’Starting’)
 

% starting torque calculation: Resistance Split Phase Start
 
Zer = 10;
 

for	 k = 1:length(S)
 
s = S(k);
 
As = [j*x1+j*xm+r1 0 .5*j*xm .5*j*xm;
 

0 Zer+j*x1+j*xm+r1 -.5*xm .5*xm;
 
.5*j*xm .5*xm .5*j*xm+r2/s 0;
 
.5*j*xm -.5*xm 0 .5*j*xm+j*x2+r2/(2-s)];
 

V = [v v 0 0]’;
 
I = As\V;
 
If(k) = I(3);
 
Ir(k) = I(4);
 
Tsr(k) = (p/om) * (abs(If(k))^2 * r2/s - abs(Ir(k))^2 * r2/(2-s));
 

end
 

%maxt = max(max(Tr), max(Ts));
 

figure(2)
 
plot(N, Tr, N, Ts, N, Tsr)
 
title(’Single Phase Motor: Resistive Single Phase Start’)
 
ylabel(’Torque, N-m’)
 
xlabel(’Speed, RPM’)
 
axis([0 3600 0 1.1*maxt])
 
legend(’Running’, ’Capacitive Starting’, ’Resistive Starting’)
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