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6.685 Electric Machines 

Problem Set 1 Solutions September 6, 2013 

Problem 1: If the coil is thin, Inductance is found easily to be: 

N2πR2 

L = µ0 
h 

If the coil is not thin, the magnetic field inside will be as shown in Figure 1. 

Figure 1: Field Intensity vs. Radius 

Flux linked by a coil filament at radius r is then: 

l

Ni r R − r ′ 
φ(r) = µ0 π (R − w)2 + µ0 2πr ′ dr ′ 

h R−w w 

In principle, this could be evaluated and then averaged over the coil radius to get inductance. 
However, it appears (to this calculus duffer) to re-parameterize the problem by assigning 
x = R − r, the distance from the outside of the coil. Then: 

Ni x 
Hz = x < W 

h w 
Ni 

= x > w 
h 

In which case, flux can be found for the region of the coil: 

[
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]

w ′ µ0Ni ( ) x
′ φ(x) = π(R − w)2 + 2π R − x dx ′ 

h x w 

After some manipulation, this becomes: 
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then inductance is found by averaging φ over the extent of the coil, and with a few steps of
 
grunge left out: 

1 
l 

w N 
L = 

i 0 w 
φ(x)dx 

= 
µ0πN2 l 

W 

R2 
− Rw + 

1 
w 2 

− 
Rx2 

+ 
2 x3 

dx 
hw 0 3 w 3 w 

= 
µ0πN2R2 

1 − 
4 w 

+ 
1 w 2 

h 3 R 2 R 

Problem 2: With a steady DC current, field along the centerline is simply: 

Ni 
H0 = 

h 

In the event of a transient, Faraday’s Law can be used:

 ll 
E- · d-ℓ = − 

d 
B- · -nda 

dt 

Taking this integral within the conductive cylinder at radius Rc, this is: 

2πRc d 
(Hi − H0) + πR2 µ0Hi = 0cσ dt 

Ni where Hi is the field inside and H0 = 
h 

is the field outside the shell. 

The shell time constant is identified: 

µ0σtsRc
Ts = 

2 

and the differential equation for field is: 

d 
Ts Hi + Hi = Ho

dt 

Ni Driven by a step of Ho = u(t), 
h 

� 
t 
�Ni −Hi = 1 − e Ts 

h 

This is shown in Figure 2 

To find the response of the field inside the shell, see that the symmetrical triangle wave can 
be expressed as the sum of two waveforms, each consisting of a ramp and a constant value, as 
shown in Figure 3. This observation allows us to calculate the magnetic field once and then 
add the same solution, inverted in sign and delayed. 

First, we solve the field problem for the first excitation, consisting of a ramp of length T and 
a slopt of NI , followed by a constant value of NI . During the ramp, since the ramp is the 

hT h 

integral of the step, the response is the integral of the step response, and for the period after 
the end of the ramp, the solution follows a simple first-order response to the steady state 
field: 
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Figure 2: Step Response 

Figure 3: Addition of two waves to form the triangle
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It is straightforward to combine this solution with its inverted and shifted version, and now 
there are three time regions: 
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This is shown in Figure 4, along with the triangle wave that would be the field were the shell
 
not there.
 

Finally (for this problem), we must find coil voltage. Since the coil has resistance and links
 
time varying flux, we have:
 

dλ 
v(t) = RwI(t) + 

dt 

3 

( )

( )

( ) ( )

( )

( )



 

 

� �

� �

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

A
/m

 

Outer 
Inner 

4 6.685 Problem 1, Axial Fieldx 10

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 
Time, Seconds 

Figure 4: addition of two waves to form the triangle 

Coil resistance is found by Rw = ℓw/σAw. ℓw is total wire length, and it is found my 
multiplying average wire length by the number of turns: 

w 
ℓw = 2π R − N 

2 

Wire area Aw is found by multiplying the coil cross section by space factor and dividing by 
the number of turns: 

hwλa
Aw = 

N 

So coil resistance is 

( )

w2π R − 
2 N2 

Rw = 
hwλa 

To find flux, we can observe that total flux linkage can be expressed as the sum of flux inside 
of the shell, which we have just calculated, plus flux that would be linked by the inductance 
that would exist were the region of the shell to be perfectly diamagnetic. That inductance is 
found by a minor modification of the calculation of inductance above: 

  

2µ0πN2 4 w 1 w 
R2 

− R2L0 = − +ch 3 R 2 R 

To find the rate of change of flux within the shell, we could either differentiate the field we 
found above or take advantage of the fact that the response to the derivative of a function is 
the derivative of the response to that function, and note that the derivative of the exciting 
current is two steps. In either case, we get the derivative of the magnetic field inside the shell: 
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˙ − 
τ

t 

H(t) = Hd 1 − e 0 < t < T 

T t−T t−T 

Ḣ(t) = Hd 1 − e − τ e − τ − Hd 1 − e − τ T < t < 2T 

T 2 t−2T
−Ḣ(t) = −Hd 1 − e − τ e τ 2T < t 

where Hd is the slope of the magnetic field that would exist in the absence of the shell (the 
driving field): 

NI 
Hd = 

hT 

With these fragments, we can calculate voltage: 

v(t) = Rwi(t) + L0 
di 

+ λ̇  
s

dt 

where the derivative of shell linked flux is: 

λ̇  
s(t) = πR2Nµ0Ḣ(t)c

The grungy calculations are carried out by a Matlab script that is appended. The three 
components of voltage are shown in Figure 5 and the final terminal voltage is shown in 
Figure 6. 

For the dimensions given in the problem set, parameters turn out to be:
 

Resistance 40.8 Ω
 
Inductance L0 (excluding the shell region 1.08 H
 
Inductance L (without the shell) 1.47 H
 
Approximate Inductance (ignoring coil thickness) 1.58 H
 

Problem 3 (Note this problem is mis-labeled in the original problem set as Problem 4) 

Rotational speed is: 
10, 000 

Ω = 2π × ≈ 1047Radians/sec 
60
 

and then torque is:
 
10, 000 

T = ≈ 9.55N-m 
1047
 

Rotor volume is
 
T 9.55 

3VR = = = 4.77 × 10−4 m 
2τ 10, 000 

If rotor speed RΩ = 230 m/s, R = .22 m. and then rotor length is: 

4.77 × 10−4 

ℓ = ≈ .0031m 
π × .222 

This is a kind of strange machine! We would probably seek some other morphology...
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Figure 5: Components of Voltage 
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Figure 6: Coil Terminal Voltage 
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% 6.685, Fall 2013 Problem Set 1, Problem 2
 

h = .1; % height
 
R = .2; % coil outer radius
 
w = .01; % coil thickness
 
R_c = .1; % shell radius
 
sig = 6e7; % shell conductivity
 
ts = .001; % shell thickness
 
muzero = 4e-7*pi; % permeability of free space
 
N = 1000; % turns in the coil
 
lama = 0.5; % winding factor for the coil
 
tt = .01; % transient time
 
tau = R_c*sig*ts*muzero/2; % shell time constant
 
I_0 = 10;
 

fprintf(’Problem 1, part 3 tau = %g\n’, tau)
 

H_0 =N*I_0/h; % this is the steady state field
 
Hdot_0 = H_0/tt; % this is magnitude of outer field derivative
 

t = 0:.0001:.04; % going to plot over this range of time
 

I = zeros(size(t));
 
Idot = zeros(size(t));
 
Ha = zeros(size(t));
 
H = zeros(size(t));
 
Hdot = zeros(size(t));
 

for k = 1:length(t);
 
if t(k)<tt,
 

Ha(k) = H_0 * t(k)/tt;
 
H(k) = H_0 * (t(k)/tt - (tau/tt)*(1 - exp(-t(k)/tau)));
 
Hdot(k) = Hdot_0 * (1 - exp(-t(k)/tau));
 
I(k) = I_0 * t(k)/tt;
 
Idot(k) = I_0/tt;
 

elseif t(k)<2*tt
 
Ha(k) = H_0*(1-(t(k)-tt)/tt);
 
H(k) = H_0 * (1 - exp(-(t(k)-tt)/tau)*(tau/tt)*(1-exp(-tt/tau))...
 

-((t(k)-tt)/tt - (tau/tt)*(1-exp(-(t(k)-tt)/tau))));
 
Hdot(k) = Hdot_0 * ((1 - exp(-tt/tau)) * exp((-t(k)-tt)/tau)...
 

-(1 - exp(-(t(k)-tt)/tau)));
 
I(k) = I_0 * (1 - (t(k)-tt)/tt);
 
Idot(k) = - I_0/tt;
 

else
 
Ha(k) = 0;
 
H(k) = H_0*(tau/tt)*exp(-(t(k)-2*tt)/tau)*(1-exp(-tt/tau))^2;
 
Hdot(k) = -Hdot_0 * (1 - exp(-tt/tau))^2 * exp(-(t(k)-2*tt)/tau);
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I(k) = 0;
 
Idot(k) = 0;
 

end
 
end
 

% so now plot magnetic field through the shield
 

figure(1)
 
plot(t, Ha, t, H)
 
title(’6.685 Problem 1, Axial Field’)
 
ylabel(’A/m’)
 
xlabel(’Time, Seconds’)
 
legend(’Outer’, ’Inner’)
 

% Now get the parameters of the system
 

% winding resistance
 
Rw = 2*pi*(R-w/2)*N^2/(h*w*lama*sig);
 

% Inductance of outer part
 
L_0 = (muzero*pi*N^2/h) * (R^2 - R_c^2 - (4/3)*R*w + .5 * w^2);
 

fprintf(’Winding Resistance = %g Ohms\n’, Rw);
 
fprintf(’Inductance (excluding inside shell = %g H\n’, L_0)
 

L_t = (muzero*pi*N^2/h) * (R^2 - (4/3)*R*w + .5 * w^2);
 
L_a = (muzero*pi*N^2/h) * R^2;
 

fprintf(’Inductance, total = %g\n’, L_t);
 
fprintf(’Inductance, Approximate = %g\n’, L_a);
 

% voltage from flux linkage from inside the shell
 
Vr = Rw .* I;
 
Vl = L_0 .* Idot;
 
Vi = pi*R_c^2 * N * muzero .* Hdot;
 

V = Vr + Vl + Vi;
 

figure(2)
 
plot(t, Vr, t, Vl, t, Vi, t, V);
 
title(’6.685 Problem 1, Voltages’)
 
ylabel(’Volts’)
 
xlabel(’Time, Seconds’)
 
legend(’Resistance’, ’Inductance’, ’Inside Shell’, ’Total’)
 

figure(3)
 
subplot 311
 
plot(t, Vr);
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title(’6.685 Problem 1’)
 
ylabel(’Resitive’)
 
subplot 312
 
plot(t, Vl);
 
ylabel(’Inductive’)
 
subplot(313)
 
plot(t, Vi)
 
ylabel(’Inside Shell’)
 
xlabel(’Time, Seconds’)
 

figure(4)
 
clf
 
plot(t, V);
 
title(’6.685 Problem 1’)
 
ylabel(’Volts’)
 
xlabel(’Time, Seconds’)
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