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6.685 Electric Machines 

Problem Set 8 Solutions October 24, 2013 

Problem 1: Torque-Speed as affected by seventh space harmonic This, too, is a bit arti
ficial. Seventh harmonic is, of course, the first harmonic that will introduce a noticeable kink 
in the torque-speed curve, but it is usual to include fifth and the harmonics related to slots 
too. However, we consider here the equivalent circuit shown in Figure 1. The top part of the 
circuit is as one would expect, but there is also a section for the seventh space harmonic. 

Figure 1: Induction Motor Equivalent Circuit with Seventh Harmonic 

Note that the circuit elements in this figure can be estimated to be, assuming that all of the 
rotor reactance X2 comes from the slot: 
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The winding factors are purely the breadth factors, since this machine is full pitched. (I 
didn’t recommend this as an admirable machine, did I?) 
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Currents are found in the usual way and torque is: 
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T = 3 |i2|2 + 7|i2,7|2 
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This torque is shown in Figure 2. It shows a strikingly large blip of torque about the seventh 
harmonic speed (1 of synchronous speed). Note this would be a very bad machine, as it would 
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not start, and so be subject to ’asynchronous crawling’. 
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Figure 2: Torque-Speed with Seventh Harmonic
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Problem 2: Trolley Car This one is worked entirely with the attached script.
 

1. First, note that a motor coefficient can be derived that relates back voltage to speed in 
meters/second. At the rated condition, back voltage must be: 

400, 000 
Eb = Pm/I = = 500V 

800
 

The internal motor resistance is
 

600 − 500
 
R = = 0.125Ω 

800
 

Then the motor coefficient (in volts/meter/second) must be:
 

Eb 500
 
G = = = .025V − s/A − m 

uI 25 × 800 

Note this is the same as the motor constant if we calculate it based on force: The force 
that would be produced at 25 m/s and 400,000 watts would be: 

400, 000 
F = = 16, 000N 

25
 

and then the motor constant will be:
 

F 16, 000
 
G = = = .025N/A2 

I2 8002
 

Now, if the trolley is drawing 75 kW at 25 m/s, the force at that speed is:
 

75, 000
 
F0 = = 3, 000N 

25
 

And current required to maintain that speed would be:
 

(

J

F 3, 000 
I = = ≈ 346A 

G .025 

It is also possible to estimate the voltage required as a function of speed by: 

V = (R + Gu)I 

and, of course, current is estimated by: 

( 
F0 u 

I = ( )2 
G u0 

The results are shown in Figure 3 
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Figure 3: Voltage required vs. speed 

2. To find steady speed with a terminal voltage of 600 V: 

The drag coefficient is:
 
3, 000
 

B = = 4.8N − s 2/m 
252
 

So then force is:
 
F = Bu2 = GI2
 

which means that 
( 

B 
I = u

G 

This makes voltage: 
( 

√ 
V = (R + Gu)I = R

B
u + BGu2 

G 

With voltage fixed, we can find a solution for speed: 

(

R V R 
u = ( )2 + − 

2G BG 2G 

and this evaluates to just about 30.2 m/s. 

3. So to make a limiting speed of 25 m/s, we need a force of F = Ku2 or, since K = 
4.8N − sec2/m2 and u = 25m/s, Force is 3,000 N and current required is 346.41 A. 
Then back voltage is Eb = GuI = .025×25×346.41 ≈ 216.5V . Total resistance required 

600−216.5is Rt = ≈ 1.107Ω. Since internal resistance is 1/8Ω, we must add 0.982 Ohms. 
346.41 

Dissipation in that is .982 × 346.412 ≈ 118 kilowatts. 
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4. If current is limited to 2000 A, the force produced is: 

F = .025 ∗ 20002 = 100, 000N
 

And this would be
 
F = Mg sin θ 

FSo the angle is about θ = sin−1 
Mg 

≈ 14.8◦ . The back voltage must be: 

Eb = V − RI = 600 − .125 × 200 ≈ 350V 

and that means speed must be: 

Eb 350 
u = = = 7m/s 

GI .025 × 2000 

5. Simulation of acceleration of the car up a hill is set up in the attached script. The results 
are shown in Figure 4. Note that the 2,000 A current limit is not reached. As an idiot 
check, see that to climb a 4◦ grade, the force required is: 

F = Mg sin 4◦ = 27, 378N 

and that requires a current of: 
J 

27, 378 
I = ≈ 1046A 

.025
 

and the simulation of Figure 4 seems to settle out to about that level.
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Figure 4: Simulation of Trolley Car Transient 

A script for this problem is appended, and the more precise answers printed out by that script 
are: 
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Trolly Car
 
Back Voltage = 500
 
Force Produced = 16000
 
Force Coefficient G = F/I^2 = 0.025
 
Back Voltage Coefficient G = E_b/(u I) = 0.025
 
Drag Coefficient = 4.8 N-sec^2/m^2
 
Current at 25 m/s = 346.41 A
 
Maximum Speed at 600 V is 39.1929 M/s
 
Part 3: to do 25 m/s
 
Force = 3000 N
 
Required Current = 346.41 A
 
Back Voltage = 216.506 V
 
Total Resistance = 1.10705
 
Added dropping Resistor = 0.982051
 
Dissipation in that is 117846 W
 
Part 4: Maximum Slope at 2000.000 A is 14.7611 degrees
 
And we can do that at 7 m/s
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Problem 3: Dynamo The generator will self-excite whenever there is a stable intersection of the 
excitation curve and the resistance current characteristic of the field winding. 

Because of the shape of the curve, the criterion for this intersection is that: 

∂Eaf 
> Rf

∂If 

Since the excitation curve is: 
 

If 
 

N − 

Eaf = aIf + b(1 − e If0 )
N0

this means that, for a stable intersection to occur, 
  

N b 
a + > 250Ω 

N0 If0

And with a = 5, b = 250 and If0 = 1, this makes the minimum speed for self excitation 
N ≈ 490.2RPM. 

To find the steady state condition at 750 RPM, we have to rely on the nonlinear equation 
solver. What we do is use the procedure fzero() to find a zero of: 

  

If 
  

N − 

aIf + b 1 − e If 0 − (Ra + Rf ) If = 0 
N0

This is written into a function and then the script calls fzero(). The script for this is 
attached. We find, for N = 1.5 that field current is about .946 amperes and resulting 

N0 

internal voltage is about 236 volts. 

To get the excitation curve, we repeat this process over a wide range of speeds. The scripts 
attached show how this is done and the result is shown in Figure 5 

To get the output voltage as a function of load current, consider the equivalent circuit shown 
in Figure 6. An expression for terminal voltage is: 

  

Ra
V = Ea − Ra IL + V 

Rf

And if 
  

( r

N V − 
V 

RfEa = a + b 1 − e 
N0 Rf 

We have a system that can be easily solved by fzero(). The details are shown in the attached 
scripts. 

Now: to compound the machine to achieve zero apparent resistance at zero load, see that if 
′we have a series field with Ns = αNf turns, we can assign If = If + αIL. Voltage is: 

  

Ra ′ V 1 + = E(If ) − RaIL
Rf
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Figure 5: No Load Voltage 

Then to achieve zero regulation, note that: 

Ra ∂V ∂Ea
1 + = α − Ra

Rf ∂IL ∂If 

The compounding ratio is then: 
Rs

α = 
∂Ea 

∂If 

To finish this, we compute: 
∂Ea − 

If 

If 0 = Nr a + be 
∂If 

The value of α is found to be just about .0065, so with a 1000 turn field winding, the number 
of series turns should be about six or seven.
 

The calculation is carried out by the attached scripts. What is done is to find a solution for
 
voltage: going around the loop:
 

  

   
V +αILRfRa  V  −

If 0 
 

  V 1 + − Nr a + αIL + b 1 − e + RaIL = 0 
  Rf Rf 

This is conveniently done, using fzero() with the value of α set to the value calculated 
here, and then to get the uncompensated value, with α set to zero. The voltage is shown in 
Figure 7. 

Finally, we simulate voltage buildup in the machine, without the compound field winding. 
This is straightforward, handled by the scripts that are attached and the result is shown in 
figure 8. 
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Figure 6: Dynamo Circuit
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Script for Problem 1: 

% 6.685 Problem Set 8, Problem 1 (2013)
 
% this is a 350 kW induction motor
 
% torque_speed curve as affected by seventh space harmonic
 

Vz = 600/sqrt(3); % line-neutral voltage (RMS, line-neutral)
 
fz = 60; % Line frequency
 
p = 4; % number of pole pairs
 
x1z = .038; % stator leakage reactance
 
x2z = .114; % rotor leakage reactance
 
r1 = .017; % stator resistance
 
r2z = .010; % rotor resistance: low frequency limit
 
xmz = 10.0; % magnetizing reactance
 
Pfw0 = 8000; % friction and windage base
 
epsw = 3; % speed exponent of friction and windage
 
Pc0 = 10000; % core base loss (w)
 
slc = .025; % stray load coefficient
 
epsf = 1.8; % core loss frequency exponent
 
epsb = 2.2; % core loss flux exponent
 
Rcz = 3*Vz^2/Pc0; % core parallel element
 
tol = 1e-4; % tolerance for resistor loops
 
crit = 2e-3; % tolerance for getting close to 1/7 speed
 

% part 1: ordinary torque/speed curve
 

Rc = Rcz;	 % use the parallel core loss
 
% element as-is
 

f = fz;	 % and line frequency
 
x1 = x1z;	 % so reactances are base
 
x2 = x2z;
 
xm = xmz;
 
V = Vz;
 

om = 2*pi*f; % frequency in radians/second
 
s = logspace(-3,0,2000); % use this range of slip
 

% first, calculate with only the space fundamental
 
r2 = r2z; % this is R2
 
Zr = j*x2 + r2 ./ s; % rotor impedance
 
Zm = j*xm*Rc/(j*xm + Rc); % magnetizing element impedance
 
Zag = Zr .* Zm ./ (Zr + Zm); % air-gap impedance
 
Zt = j*x1 + r1 + Zag; % terminal impedance
 
it = V ./ Zt; % terminal current
 
i2 = it .* Zm ./ (Zm + Zr); % rotor current
 
Pag = 3 .* abs(i2) .^2 .* r2 ./ s;% air-gap power
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Tn = (p/om) .* Pag; % this is torque
 
omm = (om/p) .* (1 - s); % mechanical speed
 
N = (60/(2*pi)) .* omm; % in RPM, for convenience
 

% now get the seventh harmonic stuff
 
m = 2; % slots per pole per phase
 
gama = 2*pi/(6*m); % slot angle
 
k1 = sin(m*gama/2)/(m*sin(gama/2));
 
k7 = sin(m*7*gama/2)/(m*sin(7*gama/2));
 
r27 = r2z*(k7/k1)^2;
 
x27 = x2z*(k7/k1)^2;
 
xm7 = xmz*(k7/(7*k1))^2;
 
s7=7 .* s -6;
 
% correction for stator leakage:
 
xl7 = xm7*x27/(xm7+x27);
 
x1 = x1z - xl7;
 
Zr = j*x2 + r2 ./ s; % rotor impedance
 
Zm = j*xm*Rc/(j*xm + Rc); % magnetizing element impedance
 
Zag = Zr .* Zm ./ (Zr + Zm); % air-gap impedance
 
Zr7 = j*x27 + r27 ./s7; % rotor impedance at 7th
 
Zag7 = j*xm7*Zr7 ./(j*xm7+Zr7); % air-gap impedance at 7
 
Zt = j*x1 + r1 + Zag + Zag7; % terminal impedance
 
it = V ./ Zt; % terminal current
 
i2 = it .* Zm ./ (Zm + Zr); % rotor current
 
i27 = it .* j*xm7 ./(j*xm7 + Zr7); % seventh rotor current
 
Pag = 3 .* abs(i2) .^2 .* r2 ./ s;
 
Pag7 = 3 .* abs(i27) .^2 .* r27 ./ s7;% air-gap power
 
T = (p/om) .* Pag + (7*p/om) .* Pag7; % this is torque
 

figure(1)
 
clf
 
plot(N, Tn, N, T)
 
title(’6.685 Problem Set 8, Problem 1’)
 
ylabel(’Torque, N-m’)
 
xlabel(’Speed, RPM’)
 
grid on
 
legend(’Fundamental’, ’With 7^{th} Space Harmonic’)
 

\clearpage
 
\noindent Scripts for Problem 3:
 
\begin{verbatim}
 
% 6.685 Problem set 8: trolley car problem
 

global V_0 M L G R K Ilim
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M = 40000; % car mass
 
g = 9.812; % acceleration due to gravity
 
u_0 = 25; % meters per second
 
u_lim = 25; % for the part on limiting resistor
 
V_0 = 600; % voltage
 
I_0 = 800; % current at that (base) condition
 
P_0 = 400000; % producing this much power
 
L =10; % winding inductance
 

P_d = 75000; % dissipation at 25 m/s
 
F_d0 = P_d/u_0; % basic drag force
 

eps_d = 2; % force is square law
 
E_b = P_0/I_0; % this must be the back voltage
 
R = (V_0 - E_b)/I_0; % and this must be armature+field resistance
 
F = P_0/u_0; % the motor is making this much force
 
G = F/I_0^2; % force coefficient (on base speed)
 
Gc = E_b/(u_0*I_0); % just to check
 

fprintf(’Trolly Car\n’)
 
fprintf(’Back Voltage = %g\n’, E_b)
 
fprintf(’Force Produced = %g\n’, F)
 
fprintf(’Force Coefficient G = F/I^2 = %g\n’, G)
 
fprintf(’Back Voltage Coefficient G = E_b/(u I) = %g\n’, Gc)
 
% Part 1: Steady Operation
 
I_s = sqrt(F_d0/G);
 

% Part 2: calculation of max speed at voltage
 
K = F_d0/u_0^2;
 
u_max = sqrt((.5*R/G)^2 + V_0/sqrt(K*G)) - .5*R/G;
 
fprintf(’Drag Coefficient = %g N-sec^2/m^2\n’, K)
 
fprintf(’Current at %g m/s = %g A\n’, u_0, I_s)
 
fprintf(’Maximum Speed at %g V is %g M/s\n’, V_0, u_max)
 

% part 3: to do u_lim
 
Force = K*u_lim^2;
 
Ireq = sqrt(Force/G);
 
Eback = G*u_lim*Ireq;
 
Rtot = (V_0-Eback)/Ireq;
 
Rlim = Rtot - R;
 
fprintf(’Part 3: to do %g m/s\n’, u_lim)
 
fprintf(’Force = %g N\n’, Force)
 
fprintf(’Required Current = %g A\n’, Ireq)
 
fprintf(’Back Voltage = %g V\n’, Eback)
 
fprintf(’Total Resistance = %g\n’, Rtot)
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fprintf(’Added dropping Resistor = %g\n’, Rlim)
 
fprintf(’Dissipation in that is %g W\n’, Ireq^2 * Rlim)
 

I_lim = 2000; % what force can we do?
 
F_lim = G*I_lim^2; % this is maximum force
 
E_lim = V_0 - R*I_lim; % and this is back voltage at that current
 
u_lim = E_lim/(I_lim*G); % and this is how fast we can go
 
phi_lim = asin(F_lim/(M*g)); % this is the angle we can climb
 
phi_deg = (180/pi) * phi_lim; % in degrees
 
fprintf(’Part 4: Maximum Slope at %8.3f A is %g degrees\n’,I_lim, phi_deg)
 
fprintf(’And we can do that at %8.3g m/s \n’, u_lim)
 

%So lettuce print what the trolley can do: voltage vs. speed
 

u = 0:.1:40; % over this range of speeds
 
F = F_d0 .* (u ./ u_0) .^eps_d; % drag force as a function of speed
 
I = sqrt(F ./ G); % current required to drive the thing
 
Eb = G .* I .* u; % back voltage produced
 
V = Eb + R .* I; % and this is terminal voltage
 

figure(1)
 
clf
 
plot(u, V, [0 40], [600 600], ’--’, [u_max u_max], [0 600], ’--’)
 
title(’Trolley Car Drive, Steady State’)
 
ylabel(’Terminal Voltage’)
 
xlabel(’Speed, m/s’)
 

% now we are about to simulate the motor
 

tt = 0:.1:200;
 
X0 = [0 0];
 

Ilim = 10000; % big enough it doesn’t count
 

[tn, Xn] = ode23(’tcsim’, tt, [0 0]);
 

Ilim = 2000;
 

[tl, Xl] = ode23(’tcsim’, tt, [0 0]);
 

in = Xn(:,1);
 
un = Xn(:,2);
 
il = Xl(:,1);
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----------------------

ul = Xl(:,2);
 

figure(2)
 
clf
 
subplot 211
 
plot(tn, un, tl, ul)
 
title(’Acceleration up a hill’)
 
ylabel(’Speed, m/s’)
 
%axis([0 100 -5 20])
 
subplot 212
 
plot(tn, in, tl, il)
 
ylabel(’Current, A’)
 
xlabel(’Time, seconds’)
 
legend(’I Unlimited’, ’I Limited’)
 

function xdot = tcsim(t, X)
 

global V_0 M L G R K Ilim
 

g = 9.812;
 
th = pi*2/180; % this is the grade
 

i = X(1);
 
u = X(2);
 
idotp = (V_0 - (G*u + R) *i)/L;
 

if (i >= Ilim && idotp > 0)
 
idot = 0;
 

else
 
idot = idotp;
 

end
 

udot = (G*i^2 - u^2*K - M*g*sin(th))/M;
 

xdot = [idot udot]’;
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Scripts for Problem 3 

% voltage vs. speed for the DC generator
 
% and voltage buildup
 
global Nr a b Rf Lf
 
N_0 = 500;
 
N_op = 750;
 
Rf = 250;
 
Lf = 10;
 
a = 5;
 
b = 250;
 
i_f = 0:.01:10;
 

eaf	 = a .*i_f + b .* (1-exp(-i_f));
 

ifs = 0:.01:1;
 
vfs = Rf .* ifs;
 

figure(1)
 
plot(i_f, (N_op/N_0) .* eaf)
 
tit = sprintf(’DC Dynamo Exitation Curve at %4.0f RPM’, N_op);
 
title(tit)
 
ylabel(’Armature Voltage, V’)
 
xlabel(’Field Current, A’)
 
grid on
 

% voltage at some speed:
 
Nr = N_op/N_0;
 
isubf = fzero(’dcf’, [.01 10]);
 
Ea = Nr * (a*isubf + b*(1-exp(-isubf)));
 

fprintf(’At %g RPM, I_f = %g and E_a = %g\n’, N_op, isubf, Ea)
 

% ok now find excitation curve
 

N =	 500:5:1000;
 

E =	 zeros(size(N));
 

for	 k = 1:length(N)
 
Nr = N(k)/N_0;
 
isubf = fzero(’dcf’, [.01 10]);
 
E(k) = Nr * (a*isubf + b * (1-exp(-isubf)));
 

end
 

figure(2)
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--------------------

--------------------

--------------------

plot(N, E)
 
title(’DC Dynamo: No Load Voltage’)
 
ylabel(’VDC’)
 
xlabel(’RPM’)
 

%Now, simulate buildup
 

i_f0 = .1;
 
t_0 = [0 1];
 
Nr = 1.5;
 

[t, i_ft] = ode45(’slopes’, t_0, i_f0);
 

figure(3)
 
plot(t, i_ft)
 

E_af = Nr .* (a .* i_ft + b .* (1-exp(-i_ft)));
 

figure(5)
 
plot(t, E_af)
 
title(’DC Dynamo Voltage Buildup’)
 
ylabel(’VDC’)
 
xlabel(’Sec’)
 

function z = dcf(i_f)
 
% this one gets zeroed
 
global Nr a b Ra Rf Lf Rff alf Il
 

z = Nr * (a*i_f + b*(1-exp(-i_f))) - Rf*i_f;
 

function difdt = slopes(t, x)
 
global Nr a b Rf Lf
 

difdt = (Nr * (a*x + b*(1-exp(-x))) - Rf*x)/Lf;
 

% compounding of that odd DC generator
 
global Nr a b Ra Rf Lf Rff alf Il
 
N_0 = 500;
 
Lf = 5;
 
Rff = 249;
 
a = 5;
 
b = 250;
 
Ra = 1; % armature part of resistance
 
Rf = Ra+Rff; % for original loop
 
Nr = 1.5; % 750 RPM
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-----------------

Il = 0; % with zero load current, 
alf = 0; % need to phony this up 
Vz = fzero(’dcgf’, 300); % starting point voltage 
isubf = Vz/Rff; % starting point field current 
Eaf	 = Nr * (a*isubf + b*(1-exp(-isubf))); % voltage at this point
 

dE = Nr * (a + b * exp(-isubf)); % slope of voltage vs. current
 

alf = Ra/dE; % required turns ratio for series field
 
fprintf(’Dynamo Negative Impedance at Equilibrium Current = %g\n’, dE)
 
fprintf(’Zero Load Field Current = %g\n’, isubf)
 
fprintf(’Series Field Turns Ratio
 

I_l = 0:.1:25;
 
V = zeros(size(I_l));
 

for	 k = 1:length(I_l)
 
Il = I_l(k);
 
V(k) = fzero(’dcgf’, Eaf);
 

end
 

= %g\n’, alf)
 

% load current
 
% leave some space
 

% here we find compensated voltage
 

fprintf(’isubf = %g Eaf = %g\n’, isubf, Eaf)
 
fprintf(’Vz = %g alf = %g\n’, Vz, alf)
 

alf = 0; % to generated uncompensated voltage
 
Vn = zeros(size(I_l));
 
for k = 1:length(I_l)
 

Il = I_l(k);
 
Vn(k) = fzero(’dcgf’, Eaf);
 

end
 

figure(4)
 
plot(I_l, V, I_l, Vn)
 
title(’Compounded DC Dynamo’)
 
ylabel(’VDC’)
 
xlabel(’Load Current’)
 
legend(’Compensated’, ’Uncompensated’)
 

function z = dcgf(V)
 
global Nr a b Ra Rf Lf Rff alf Il
 

% computes the terminal voltage difference
 
z = V*(1+Ra/Rf) - Nr*(a*(V/Rf + alf*Il) + b*(1-exp(-(V/Rf + alf*Il))))
 
+ Ra*Il;
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