Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

6.691 Seminar in Advanced Electric Power Systems

Problem Set 4 Solutions

April 15, 2006

The Phasor Diagram for operation of this machine at the specified condition is shown in Figure 1. Note that this figure is only approximately correct: the resistive part of the diagram is quite exagerated so that the resistive part of impedance can be seen.

Figure 1: Cartoon of Operational Phasor Diagram

The machine is operated at rated kVA and at a power factor of 85% lagging (over-excited). This means that the *real* component of current is $i_r = .85$ per-unit and the *imaginary* component of current is $i_i = -\sqrt{1 - .85^2}$. If we note the actual current to be $i_a = i_r + ji_i$, we can find a point on the quadrature axis:

$$e_1 = v_t + (r_a + jx_q)i_a$$

This allows us to find the torque angle (just the angle of e_1), and then to construct the two components of current:

$$i_d = i_a \sin \delta - \psi$$

$$i_q = i_a \cos \delta - \psi$$

The voltage seen by the reactive parts of the machine is inside of the stator resistance:

$$v_a = v_t + r_a i_a$$

and we may express this as:

$$v_a = |v_a| \angle v_a = |v_a| e^{j\theta_a}$$

Voltage components are:

$$v_q = |v_a| \cos (\delta + \theta_a)$$

$$v_d = |v_a| \sin (\delta + \theta_a)$$

Now, the d- and q- axis fluxes are simply:

$$\psi_d = v_q$$

 $\psi_q = -v_d$

Air-gap fluxes are simply terminal fluxes plus flux produced by the stator leakeage:

$$\psi_{ad} = \psi_{kd} = \psi_d + x_{al}i_d$$

$$\psi_{aq} = \psi_{kq} = \psi_q + x_{al}i_q$$

Field flux is air-gap flux on the d- axis plus flux across the field leakage inductance:

$$\psi_f = \psi_d + x_{fl} i_f$$

where, for the steady state condition:

$$i_f = \frac{e_a}{x_{ad}}$$

This has all been built into a MATLAB script which is appended and which yields the following rendition of numbers:

```
Problem Set 4, Part 1
Terminal Voltage = 1
Terminal Current = 0.85 + j -0.526783
Terminal Current Magnitude = 1
Terminal Current Angle = -0.554811 radians = -31.7883 deg
Torque Angle = 0.68942 radians = 39.5009 deg
Torque Angle = 0.68942
                        PF angle = -0.554811
Voltage behind sync reactance eq = 2.85721
Voltage Behind Resistance = 1.00493 + j -0.00305534
D-axis voltage = 0.641583 Q-Axis voltage = 0.773476
Terminal Flux psid = 0.773476
                               psiq = -0.641583
Air-Gap Flux psiad = 0.868191
                               psiaq = -0.609504
Field Current if = 1.36057
                             Field Flux psif = 1.43963
Torque by generation plus loss = 0.8558
Torque by flux times current = 0.8558
Audit Difference = 1.11022e-16
```

Note the last few lines relate to the last sub-question which was asked: torque from power balance would be, in per-unit:

$$t_e = P_{out} + r_a \left(i_d^2 + i_q^2 \right)$$

and torque from the crossed-current times flux:

$$t_e = \psi_d i_q - \psi_q i_d$$

which do appear to be pretty close to the same.

Figure 2: Operational Phasor Diagram

Shown in Figure 2 is the vector diagram drawn by MATLAB. It is not annotated but by comparison with the cartoon of Figure 1 you can see what vectors are which.

```
% 6.691 Problem Set 4 Solution
% Part 1: Steady operation of the machine
% data
xad = 2.1;
xaq = 1.9;
xal = 0.1;
xkdl = 0.183;
xfl = 0.42;
xkql = 0.128;
ra = .0058;
vt = 1.0;
it = 1.0;
pf = 0.85;
% a couple of little things
xd = xad+xal;
xq = xaq+xal;
% take advantage of MATLAB's ability to do complex numbers
ia = it*(pf - j * sqrt(1 - pf<sup>2</sup>)); %this is the complex current
e1 = vt + ia*ra+j*xq*ia;
                              % this is on the q-axis
va = vt + ia*ra;
                              % this is voltage 'inside' resistance
tha = angle(va);
                              % pretty small angle
delta = angle(e1);
                              % this is the torque angle
psi = angle(ia);
                              % and this is power factor angle
                                  % since the psi we calculate is negative
idg = it*sin(delta - psi);
iqg = it*cos(delta - psi);
i_d = idg*exp(j*(delta - pi/2));
i_q = iqg*exp(j*delta);
ea = abs(e1) + (xd - xq) * idg; % voltage behind synchronous reactance
e_a = ea*exp(j*delta);
vq = abs(va)*cos(delta - tha); % voltage on q axis is d axis flux
vd = abs(va)*sin(delta - tha);
v_q = vq*exp(j*delta);
v_d = vd*exp(j*(delta-pi/2));
psid = vq;
psiq = -vd;
psiad = psid + xal*idg;
                         % air-gap flux
psiaq = psiq + xal*iqg;
                              % these will be damper fluxes too
                             % field current
i_f = ea/xad;
psif = psiad + xfl*i_f; % flux at field terminal
% now do an audit
te1 = .85+ra*(idg^2+iqg^2); % input is output plus losses
te2 = psid*iqg - psiq*idg; % done by flux times current
```

```
% now some snazzy looking output
fprintf('Problem Set 4, Part 1\n');
fprintf('Terminal Voltage = %g\n', vt);
fprintf('Terminal Current = %g + j %g\n',real(ia), imag(ia));
fprintf('Terminal Current Magnitude = %g \n', abs(ia));
fprintf('Terminal Current Angle = %g radians = %g deg \n', psi, 180*psi/pi);
fprintf('Torque Angle = %g radians = %g deg\n', delta, 180*delta/pi);
fprintf('Torque Angle = %g PF angle = %g\n',delta, psi);
fprintf('Voltage behind sync reactance eq = %g\n',ea);
fprintf('Voltage Behind Resistance = %g + j %g\n',real(va), imag(va));
fprintf('D-axis voltage = %g Q-Axis voltage = %g\n',vd, vq);
fprintf('Terminal Flux psid = %g psiq = %g\n',psid, psiq);
fprintf('Air-Gap Flux psiad = %g psiaq = %g\n',psiad, psiaq);
fprintf('Field Current if = %g Field Flux psif = %g\n',i_f, psif);
fprintf('Torque by generation plus loss = %g\n', te1);
fprintf('Torque by flux times current = %g\n', te2);
fprintf('Audit Difference = %g\n',te1-te2);
\% and now we can draw a scaled version of the vector diagram: here are the
% vectors
v_1 = [0 vt];
                                          % terminal voltage
v_1a = [vt va];
                                          % inside of resistances
v_2 = [0 ia];
                                          % terminal current
v_3 = [0 e1];
                                          % on the q-axis
v_4 = [0 ea*exp(j*delta)];
                                         %
                                            eaf
v_5 = [0 i_d];
                                          %
                                            id
                                         %
v_{6} = [0 i_{q}];
                                            iq
v_7 = [va e1];
                                          % vector to q axis
v_8 = [va va+j*xd*i_d];
                                         % voltage from d- axis current
v8a = [va va+j*xq*i_d];
v_9 = [va+j*xd*i_d e_a];
                                          % from there to e1
d_9a = [va+j*xq*i_d e1];
v_{10} = [0 \ v_{q}];
                                          % q-axis voltage
v_{11} = [0 \ v_d];
                                          % d-axis voltage
d_q = [va v_q];
                                          % dotted line from va to vq
d_d = [va v_d];
                                          % another dotted line from va to vd
d_qi = [ia i_q];
d_di = [ia i_d];
figure(1)
clf
hold on
plot(real(v_1), imag(v_1), '-d')
plot(real(v_1a), imag(v_1a), '-d')
```

```
plot(real(v_2),
                imag(v_2),
                            '-d')
plot(real(v_3), imag(v_3),
                            '-d')
plot(real(v_4),
                imag(v_4),
                           '-d')
plot(real(v_5),
                imag(v_5),
                           '-o')
plot(real(v_6),
                imag(v_6),
                           '-d')
plot(real(v_7),
                imag(v_7),
                           '-d')
plot(real(v_8),
                imag(v_8),
                           ·-^·)
plot(real(v_9),
                imag(v_9), '-d')
plot(real(v_10), imag(v_10),
                             '-d')
plot(real(v_11), imag(v_11), '-d')
plot(real(d_q),
                imag(d_q), '--');
plot(real(d_d),
                imag(d_d), '--');
plot(real(d_qi), imag(d_qi), '--');
plot(real(d_di), imag(d_di), '--');
plot(real(d_9a), imag(d_9a), '--');
axis square
axis equal
```