Computing the time dependent amplitude function

$$ec{A}(q)$$
 $ec{\Psi}(x,t)$ $ec{A}(q)$

Now that we have , how do we find the time dependence of ? Since is the coefficient vector for the eigenfunctions of \mathbf{H} , we know the time dependence is accounted for by multiplying each coefficient by $\mathbf{e}^{-i\mathbf{E}\mathbf{t}/\hbar}$. So, we now create a vector \mathbf{E} , indexed by \mathbf{q} .

$$ec{E} = rac{\hbar^2}{2m} * ec{q^2} = rac{\hbar^2}{2m} \left(egin{array}{c} q_1^2 \ q_2^2 \ q_3^2 \ dots \ q_m^2 \end{array}
ight)$$

Now, if we take the exponential of times each element, where t is the time we

 $\Psi(x)$ wish to evaluate at, we get

$$ec{\zeta} = \left(egin{array}{c} e^{-iE_1t/\hbar} \ e^{-iE_2t/\hbar} \ dots \ e^{-iE_mt/\hbar} \end{array}
ight)$$

Now, if we perform element by element multiplication (MATLAB® command is ``.*") on $\vec{\zeta}$ $\vec{A}(q)$

$$ec{A}_t(q) = ec{A}(q) \cdot * ec{\zeta}(q) = \left(egin{array}{c} A(q_1)\zeta(q_1) \ A(q_2)\zeta(q_2) \ dots \ A(q_m)\zeta(q_m) \end{array}
ight) = \left(egin{array}{c} A(q_1)e^{-iE_1t/\hbar} \ A(q_2)e^{-iE_2t/\hbar} \ dots \ A(q_m)e^{-iE_mt/\hbar} \end{array}
ight)$$

Now, we have taken account for the time dependence by modifying our amplitude

function (note the subscript t to denote that this is at a particular time t). The last chore is to now compute the wave function in x-space from the modified amplitude function.