6.730 Physics for Solid State Applications

Lecture 19: Motion of Electronic Wavepackets
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e Review of Last Time

e Detailed Look at the Translation Operator
e Electronic Wavepackets

e Effective Mass Theorem



Proof of Bloch's Theorem

Step 1: Translation operator commutes with Hamiltonain...
so they share the same eigenstates.

Try(r) =y(r+R)
Translation and periodic Hamiltonian commute...
TrH(1)$(r) = Hr+R)$(r+R) = H(r)¢(r+R) = H(r) Try(r)

Therefore, Hy(r) = Ey(r)
Try(r) = c(R)y(r)

Step 2: Translations along different vectors add...
so the eigenvalues of translation operator are exponentials

, c¢(R+R) =c(R)c(R)
TRTrY(r) = c(R)TRrp(r) = c(R)c(R)(r) .
h c(R) = 'R

TR1R/ r) =T / r) = R R’ r .
RIR/Y(r) R+R/Y(T) = c(R+ R)Y(r) (e 4 R) = Ry (R)



Momentum and Crystal Momentum
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Leads us to, the action of the Hamiltonian on the Bloch amplitude....

> |
ek (TL < vV + k) + V(T)) i (r) = Epe’™™ " (r)

2m

5 K2
Hypup(r) = (2

m

(9 +5) V) k) = Byin(r



K.p Hamiltonian
(in our case q.p)

2
Hygig(r) = (;m< V4 k) +v<r>> ik (r)

If we know energies as k we can extend this to calculate energies at k+qg
for small q...
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K.p Hamiltonian

R2 /1 R? 5
Hk—l—q_Hk_I_—q <€V+k>+2 ¢

Taylor Series expansion of energies...
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Matching terms to first order in g...
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Energy Surface for 2-D Crystal

1
< vn(k) >= ﬁVkEn(k)

In 2-D, circular energy contours result in < vn(k) > parallel to k



Energy Surface for 2-D Crystal

1
< vn(k) >= ﬁVkEn(k)

In general, for higher lying energies < vn(k) > is not parallel to k



Semiclassical Equation of Motion

d<TR>
dt

= 2 {[Tear, Trl) = eB{[7, Tr])

Plugging in this commutation relation into the equation of motion...

d<Tpn>
e —wE<hTM>
= ¢ER %(TR>
Solving the simple differential equation...
eE
<TR> — eieERt/TL k= ?t + kO

From Bloch’s Thm. We know the dk
eigenvalues of 7... el = dt
TRw(T) — 6ikR¢(T) <TR> — eikR dk
Fext — ha




Electron Motion in a Uniform Electric Field
2-D Crystal

http://www.physics.cornell.edu/sss/ziman/ziman.html



Properties of the Translation Operator

Definition of the translation operator...

Try(r) = ¢(r+R)
Bloch functions are eigenfunctions of the lattice translation operator...

Tr(r) = c(R)(r)

c(R) = 'R

Lattice translation operator commutes with the lattice Hamiltonian (V_,=0)

(TR, H(r)] =0

The translation operator commutes with other translation operators...

[TR17 TRz] — O



Properties of the Translation Operator

Lets see what the action of the following operator is...

~RZ (1 g0 1pe0® 1,30°
[e 8]]”(:1;)—(1 R8x+2!R Ox2 3!R 8$3+ )f(.:c)

= f(z) — Rf'(z) + %RQf”(:c) - %R?’f”’(g;) 4.

= f(z - R)

This is just the translation operator...

e BVrf(r) = f(r - R)

T Rf(r) =e ®Vrf(r)




Another Look at Electronic Bandstructure
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As we will seeg, it is often convenient to represent the bandstructure by
its inverse Fourier series expansion...

En(k) =" En(Ry)e 1t
;




Translation Operator and Lattice Hamiltonian

From before, the eigenvalue equation for the translation operator is....
TR (r) = e Fap(r)

If we multiply this by the Fourier coefficients of the bandstructure...
En(Ry) Trab(r) = En(Ry) e Feyp(x)
...and sum over all possible lattice translations...

N En(Rp) Tr(r) =3 En(Ry) e Feap(r)
/ - .

En(k)
...we see that the eigenvalue on the left is just the bandstructure (energy)

> En(Ry) Ty (r) = En(k) ¢(x)
‘

This suggests the operator on the left is just the crystal Hamiltonian !

Ho =) En(Ry) TR, No wonder [Hy, Tr] = 0
/



Electron Wavepacket in Periodic Potential

Wavepacket in a dispersive media... vg = Vyw(k)

So long as the wavefunction has the same short range periodicity as the
underlying potential, the electron can experience smooth uniform motion
at a constant velocity.



Wavefunction of Electronic Wavepacket

The eigenfunction for k~k, are approximately...
Y k() = e uy, 1 (r)

~ etk

'Tun,ko(r)

r etlk=ko) Ty o ()
A wavepacket can therefore be constructed from Bloch states as follows...

zp;z(’rv t) = Z cn (k, t)¢n,k(r)
k

~ > cn(k, t)ei(k_kO)'TQ#n,ko(r)
k
P (r,t) & e RO G (1, D)1y, 1 (1) = Gn(r, D)y oy (1)

Gis a slowly varying function... Gn(r,t) =) cn(k, £)ethr
k



Wavefunction of Electronic Wavepacket

Yn(r,t) = e®oT Gu(r,t) D o (1)

envelopefunction  RBloch function

¢;7,(7°7 t) — Gn(r) t) Lu’n,ko(r)J

envelope function  Bloch amplitude

Since we construct wavepacket from a small set of k’s...

2
Ak<<—7r and Ar > a

a

...the envelope function must vary slowly...wavepacket must be large...

Ar > a



Action of Crystal Hamiltonian on Wavepacket
ﬁO l%,k — ﬁO (Gn(r, t)un,ko(r))

=Y En(Ry) Tg, (Gn("“a t)un,ko(r))
14

= ; En(Ry) Gn(r + Ry, )ty (v + Ry)

= U, ko (1) D En(Ry)Gn(r + Ry, t)
7

— un,ko("“) %: En(Ry) TRe Gn(r,t)

N >4

Ho

=ty ko (r) Ho Gn(r,t)

It appears that the Hamiltonian only acts on the slowly varying amplitude...



Effective Mass Theorem
If we can consider an external potential (eg. electric field) on the crystal...
H= ﬁO + ‘Zza:t

a?vb;%k(’r) t)
ot

(Ao + Vet (r)) 4y, 1 (rt) =ik

The influence of the external field on the wavepacket...

P (1, t) & Gr(r, )y, (1)

OGn(r, 1)
ot

g (T) (Ho + Veat(r)) Gu(r,t) = ifiay, g (7)

We can solve Schrodinger’s equation just for the envelope functions...

OGnr(r,t)
Ot

(ﬁO + Vemt(r)) Gn(r,t) = ih



Normalization of the Envelope Function

1= [ D P
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Since the envelope is slowly varying...it is nearly constant over the
volume of one primitive cell...
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< Gn(r,t)|Gn(r,t) >= Vpox




What is the Position of Wavepacket ?
Proof that...(F(¢))q =~ (T(t))

< Pn(r, t)|7|Pn(r, t) >

<) = D (D) >

= G, (r, )G (r, )ust 1 (1) 7wy g (r)dr
VBox
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< Gn(r,t)|r|Gn(r,t) >
< Gp(r,t)|Gp(r,t) >

= (r(t))



What is the Momentum of \Wavepacket
< Gn("“a t)|?vr|Gn(’ra t) >
— /b Zc:;(k’,t) e—i’ﬂ"rﬁ,vr (Z cn(k”,t)eik”'r> d3r
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< Galr DIFIGr D) >
< Gn(r,t)|Gp(r,t) >

<p>ag= ~ hkg but < p >%# hkg



Summary

Without explicitly knowing the Bloch functions, we can solve
for the envelope functions...

(ﬁo + Vemt(T)) Gn(?“, t) — i aGn(T, t)

ot

Bandstructure shows up in here... Hg = ) En(Ry) Tp,
¢

The envelope functions are sufficient to determine the
expectation of position and crystal momentum for the
system...

< Gn(r, 8)|r|Gn(r,t) >

<) >6= G G DIGa(n D) >

=< r(t) >

< Ga(rDIBG 1) >
< Gp(r,t)|Gn(r,t) >

<p>g= ~ hkg



