6.730 Physics for Solid State Applications

Lecture 5: Specific Heat of Lattice Waves
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Specific Heat Measurements

(hyperphysics.phy-astr.gsu.edu)
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3-D Elastic Continuum
Poisson’s Ratio Example

A prismatic bar with length L = 200 mm and a circular cross
section with a diameter D = 10 mm is subjected to a tensile
load P = 16 kN. The length and diameter of the deformed
bar are measured and determined to be L' = 200.60 mm
and D’ = 9.99 mm. What are the modulus of elasticity and
the Poisson’s ratio for the bar?






3-D Elastic Continuum
Shear Strain

Shear loading Shear plus rotation Pure shear
U d
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I, tan(2¢) ~ 2¢

Pure shear strain

Shear stress

Tyy = G20 = 2GEgy G is shear modulus



3-D Elastic Continuum
Stress and Strain Tensors

For most general isotropic medium,

T = del + 2uE
Initially we had three elastic constants: E,, G, e

Now reduced to only two: A, u




3-D Elastic Continuum
Stress and Strain Tensors

Tij = Ae 51] —I- QLLEij

If we look at just the diagonal elements
3
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Inversion of stress/strain relation:
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3-D Elastic Continuum
Example of Uniaxial Stress
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Dynamics of 3-D Continuum
3-D Wave Equation
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Net force on incremental volume element:

F=/fddd
VXYZ

F = / p—dxdydz
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Total force is the sum of the forces on all the surfaces



Dynamics of 3-D Continuum
3-D Wave Equation
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Dynamics of 3-D Continuum
3-D Wave Equation
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Finally, 3-D wave equation....
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Dynamics of 3-D Continuum
Fourier Transform of 3-D Wave Equation

211
P03 8) = (u+ MV [(Vur, ©)] + ¥ 2u(r, 0

Anticipating plane wave solutions, we Fourier Transform the equation....

— dw d3q i(qr—wt)
u(e,t) = [ 5 [ 5 33U we

pw?U(q,w) = (A + u)q [a-U(q,w)] + pa*U(q, w)

Three coupled equations for U,, Uy, and U,....



Dynamics of 3-D Continuum
Dynamical Matrix

pw?Ui(q,w) = (A +w)q; [a-U(q, w)]+41a°U;i(q, w)

Express the system of equations as a matrix....

pw?

Uy g’ + A+ wef A+ waie (A +1)g193 U,
Uy | = A+ w)aegr  p?+ A+ w)es (A4 waogs Us
Us (A + wazq A+ wage  pe®>+ A+ w3 | | Us

Turns the problem into an eigenvalue problem for
the polarizations of the modes (eigenvectors) and
wavevectors q (eigenvalues)....

ow’U=DU

}



Dynamics of 3-D Continuum
Solutions to 3-D Wave Equation

pw?Ui(q,w) = (A +w)q; [a-U(q, w)]+41a°U;i(q, w)

Transverse polarization waves:

q-U(q,w) =0

pw? = pg? for transverse waves

w = c7|q| where cr = \/E
P

Longitudinal polarization waves:
q-U(q,w) =qU

pw?U = (A +2u)q2U for longitudinal waves

A2
w = cz|q| where cr, = ¢/ + 2
P




Direct Measurements of Sound Velocity

LA phonons are faster,

since real solids are not isotropic the TA phonons travel at different velocity
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Dynamics of 3-D Continuum
Summary

Dynamical Equation can be solved by inspection
pw?U(q,w) = (A + p)q[q-U(q,w)] + nq*U(q,w)

There are 2 transverse and 1 longitudinal polarizations for each q

. . . . W — C;
The dispersion relations are linear ilal

_ M A=+ 2p
P P

The longitudinal sound velocity is always greater than
the transverse sound velocity

L _ (At2e 1/2=(1+ - )1/2
cT 7 1 —-2v




Counting Vibrational Modes
Solid as an Acoustic Cavity

For each of three polarizations:

uk(r, t) = eXp [’L(kI’ + wt)] gk’w

If the plane waves are constrained to the solid with dimension L
and we use periodic boundary conditions:
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with n; = +1,4+2,+3 ...

go(w) =

2m2e3




Specific Heat of Solid
How much energy is in each mode ?

Need to approximate the amount of energy in each mode
at a given temperature...

If we assume equipartition, we will again
Dulong-Petit which is not consistent with experiment for solids...
Approach:
» Quantize the amplitude of vibration for each mode
 Treat each quanta of vibrational excitation as a bosonic particle, the phonon

« Use Bose-Einstein statistics to determine the number of phonons
In each mode



Lattice Waves as Harmonic Oscillator

Treat each mode and each polarization as an
Independent harmonic oscillator:

1
E = Z Tka’O [nkﬂ —|— —]
k,o 2

Nk o Is the quantum number associated with harmonic

Now, we think of each quantum of excitation as a particle...

lattice waves electromagnetic waves
acoustic cavity (solid) optical cavity (metal box)
guanta observed guanta observed

by light scattering by photoelectric effect

bosons ? bosons (eg. laser)



Lattice Waves in Thermal Equilibrium

Lattice waves in thermal equilibrium don’t have a single well
define amplitude of vibration...

For each mode, there is a distribution of amplitudes...

E = k%; hwy » [(nk’a> + %]

Bose-Einstein distribution

(o) .
n =
kol ™ oo /kBT _ 4




Total Energy of a Lattice in Thermal Equilibrium

number of states indw: ¢, (w) =

2m2c3
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Specific Heat of a Crystal Lattice
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Specific Heat Measurements

(hyperphysics.phy-astr.gsu.edu)

Cy = C¢ + Cphonon =T + AT3



Aside: Thermal Energy of Photons

Energy density of blackbody:

E (> w3
Vv  Jo m23(efw/kBT — 1)

dw

E _ m?kyT*
VvV 15chS3
Specific heat :
21.4 73
Ckr=:4ﬂ kT

15¢h3



