
Lecture 16: Type II Superconductors

Outline

1. A Superconducting Vortex 

2. Vortex Fields and Currents 

3. General Thermodynamic Concepts 
• First and Second Law 
• Entropy 
• Gibbs Free Energy (and co-energy) 

November 3, 2005 4. Equilibrium Phase diagrams 

5. Critical Fields 
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Fluxoid Quantization and Type II Superconductors 

Images removed for copyright reasons. 

Please see: Figure 6.1, page 259, from Orlando, T., and K. Delin. Foundations of Applied 

Superconductivity. Reading, MA: Addison-Wesley, 1991. ISBN: 0201183234.
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The Vortex State

nV is the areal density of vortices, the 
number per unit area. 

Image removed for copyright reasons. 

Please see: "A current-carrying type II superconductor in 
the mixed state" from http://phys.kent.edu/pages/cep.htm 

Image removed for copyright reasons. 

Please see: Figure 6.2a, page 262, from Orlando, T., 
and K. Delin. Foundations of Applied Superconductivity. 
Reading, MA: Addison-Wesley, 1991. ISBN: 0201183234. 
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Quantized Vortices 
1 

But along 1 B 
mininum, so that J 

Along path C2, 

2, 

and K. Delin. Foundations of Applied 
Superconductivity. Reading, MA: Addison-Wesley, 
1991. ISBN: 0201183234. 

Image removed for copyright reasons. 
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Fluxoid Quantization along C

 the hexagonal path C is a 
vanishes along this path. 

Therefore, 

And experiments give n = 1, so each vortex 
has one flux quantum associated with it. 

For small C

Please see: Figure 6.2b, page 262, from Orlando, T., 
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Normal Core of theVortex 

ξ 

F
currents is 
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The current density diverges near the vortex center, 

Which would mean that the kinetic energy of the superelectrons would  also diverge. 
So to prevent this,  below some core radius the electrons become normal. This 
happens when the increase in kinetic energy is of the order of the gap energy. The 
maximum current density is then 

In the absence of any current flux, the superelectrons have zero net velocity 
but have a speed of the fermi velocity, v . Hence the kinetic energy with 

Coherence Length x 

as 
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The energy of a superelectron at the core is 

The difference in energy, is to first order in the change in velocity, 

With this gives 

The full BCS theory gives the coherence length 

Therefore the maximum current density, known as the depairing current density, is 
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Temperature Dependence 
Both the coherence length and the penetration depth diverge at TC 

But there ratio, the Ginzburg-Landau parameter is independent of 
temperature near TC 

Type I superconductor Al, Nb 

Type II superconductor Nb, Most magnet materials 

Massachusetts Institute of Technology  
6.763 2005 Lecture 16 

Vortex in a Cylinder 

ξ x 

z y 

φ 

Lz 

B 

and K. Delin. Foundations of Applied 
Superconductivity. Reading, MA: 
Addison-Wesley, 1991. ISBN: 0201183234. 

Image removed for copyright reasons. 
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London’s Equations hold in the superconductor 

With Ampere’s Law gives 

Because is in the z-direction, this becomes a scalar Helmholtz Equation 

Please see: Figure 6.4, page 269, from Orlando, T., 
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Vortex in a cylinder 

C0 

Which for 

and K. Delin. Foundations of Applied 
Superconductivity. Reading, MA: Addison-Wesley, 
1991. ISBN: 0201183234. 

Image removed for copyright reasons. 
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Which as a solution for an azimuthally symmetric field 

is found from flux quantization around the core, 

Please see: Figure 6.5, page 271, from Orlando, T., 

Vortex in a cylinder κ >> 1 

Foundations of Applied 
Superconductivity. Reading, MA: Addison-Wesley, 
1991. ISBN: 0201183234. 

Images removed for copyright reasons. 
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Please see: Figure 6.5, page 271, from Orlando, T., 
and K. Delin.
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Energy of a single Vortex 
The Electromagnetic energy in the superconducting region for a vortex is 

This gives the energy per unit length of the vortex as 

In the high κ limit this is 
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Modified London Equation κ >> λ/ξ 
Given that one is most concerned with the high κ limit, one approximates 

the core of the vortex ξ as a delta function which satisfies the fluxoid

quantization condition. This is known as the Modified London Equation:


The vorticity is given by delta function along the direction of the core of the vortex 
and the strength of the vortex is Φ0 

For a single vortex along the z-axis: For multiple vortices 
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General Thermodynamic Concepts 

First Law of Thermodynamics: conservation of energy 

Internal energy Heat in E&M energy stored work done by the system 
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W: Electromagnetic Energy
Normal region of Volume Vn Superconducting region of Volume Vs 

In the absence of applied currents, in Method II, we have found that 

Moreover, for the simple geometries H is a constant, proportional to the applied field. 
For a H along a cylinder  or for a slab, H is just the applied field. Therefore, 
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Thermodynamic Fields


thermodynamic magnetic field 

thermodynamic flux density 

thermodynamic magnetization density 

Therefore, the thermodynamic energy stored can be written simply as 
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Entropy and the Second Law 
The entropy S is defined in terms of the heat delivered to a system at a temperature T 

Second Law of Thermodynamics:


For an isolated system in equilibrium ∆S = 0


The first law for thermodynamics for a system in equilibrium can be written as 

Then the internal energy is a function of S, B, and η 

Conjugate variables 
Massachusetts Institute of Technology  
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Concept of Reservoir and Subsystem 
Because we have more control over the conjugate variables , we seek a 
rewrite the thermodynamics in terms of these controllable  variables. 

Isolated system = Subsystem + Reservoir 

The change in entropy of the reservoir is 

Image removed for copyright reasons. 
Please see: Figure 6.12, page 286, from Orlando, T., 

and K. Delin. Foundations of Applied 

Superconductivity. Reading, MA: Therefore,

Addison-Wesley, 1991. ISBN: 0201183234.
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Gibbs Free Energy 
The change total  entropy is then 

where the Gibbs Free Energy is defined by 

At equilibrium, the available work is just ∆G 
(the energy that can be freed up to do work) Free Energy of subsystem 
and the force is decreases 
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Gibbs Free Energy and Co-energy 
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The Gibbs free energy is 

and with the use of the first law 

The differential of G is 

Therefore, the  Gibbs free energy is a function of 

At constant temperature and no work, then the co-energy 

Note minus sign! 

Gibbs Free Energy and Equilibruim 

In Equilibrium ∆G = 0


Consider the system made up of two phases 1 and 2


Phase 1, 2Phase 2,  G= G  G = G1 Mixed phase 

Therefore, is minimized when 

Two phases in equilibrium with each other have the same Gibbs Free Energy 
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Phase Diagram and Critical Field 
∆ G < 0 So that G is always minimized, the system goes to the state of lowest 
Gibbs Free Energy. At the phase boundary, Gs = Gn. 

The 
Field HC
of the form 

C 
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Gs < Gn 

Gs > Gn 

Gs = Gn 

At zero magnetic field in the 
superconducting phase 

Thermodynamic Critical 
(T) is experimentally 

for T < T

condensation enegy 

Critical Field for Type I 

In so that 

and 

H gives 

and thus 
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Recall that 

the  bulk limit  in the superconducting state Β = 0  

Likewise in the normal state so that 

Hence, we can write 

Integration of the field from 0 to 
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Critical Fields for Type II 
The HC1 

Therefore 

The HC2 
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lower critical field is the phase boundary 
where equilibrium between having one vortex and 
no vortex in the superconducting state. 

upper critical field occurs when the 
flux density is such that the cores overlap: 
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