Lecture 16	6: Type II Superconductors
	Outline
	1. A Superconducting Vortex
	2. Vortex Fields and Currents
	 3. General Thermodynamic Concepts First and Second Law Entropy Gibbs Free Energy (and co-energy)
November 3, 2005	4. Equilibrium Phase diagrams
	5. Critical Fields
	Massachusetts Institute of Technology 6.763 2005 Lecture 16

Normal Core of the Vortex

The current density $\lim_{r \to 0} \mathbf{J}_{\mathsf{S}} = \frac{\Phi_o}{2\pi\mu_o\lambda^2} \frac{1}{r} \mathbf{i}_{\phi}$ diverges near the vortex center,

Which would mean that the kinetic energy of the superelectrons would also diverge. So to prevent this, below some core radius ξ the electrons become normal. This happens when the increase in kinetic energy is of the order of the gap energy. The maximum current density is then

$$\mathbf{J}_{\mathsf{s}}^{\mathsf{max}} = \frac{\Phi_o}{2\pi\mu_o\lambda^2} \frac{1}{\xi} \mathbf{i}_{\phi} \quad \square \qquad \mathbf{v}_{\mathsf{s}}^{\mathsf{max}} = \frac{\hbar}{m^\star} \frac{1}{\xi} \mathbf{i}_{\phi}$$

In the absence of any current flux, the superelectrons have zero net velocity but have a speed of the fermi velocity, $v_{\rm F}$. Hence the kinetic energy with currents is

$$\mathcal{E}_{kin}^{0} = \frac{1}{2} m^{\star} v_{F}^{2} = \frac{1}{2} m^{\star} \left(v_{F,x}^{2} + v_{F,y}^{2} + v_{F,z}^{2} \right)$$

Vortex in a cylinder

Which as a solution for an azimuthally symmetric field

$$B_z(r) = \begin{cases} C_0 K_0\left(\frac{r}{\lambda}\right) & \text{for } r \ge \xi \\ C_0 K_0\left(\frac{\xi}{\lambda}\right) & \text{for } r < \xi \end{cases}$$

Image removed for copyright reasons.

Please see: Figure 6.5, page 271, from Orlando, T., and K. Delin. Foundations of Applied Superconductivity. Reading, MA: Addison-Wesley, 1991. ISBN: 0201183234.

 C_0 is found from flux quantization around the core,

$$C_0 = \frac{\Phi_o}{2\pi\lambda^2} \left[\frac{1}{2} \frac{\xi^2}{\lambda^2} K_0\left(\frac{\xi}{\lambda}\right) + \frac{\xi}{\lambda} K_1\left(\frac{\xi}{\lambda}\right) \right]^{-1}$$

Which for $\kappa \gg 1$

$$C_0 = \frac{\Phi_o}{2\pi\lambda^2}$$

 Massachusetts Institute of Technology— 6.763 2005 Lecture 16

Energy of a single Vortex

The Electromagnetic energy in the superconducting region for a vortex is

$$W_{s} = \frac{1}{2\mu_{o}} \int_{V_{s}} \left[\mathbf{B}^{2} + \mu_{o} \mathbf{J}_{s} \cdot (\Lambda \mathbf{J}_{s}) \right] dv$$

This gives the energy per unit length of the vortex as

$$\mathcal{E}_V = \frac{\Phi_o^2}{4\pi\mu_o\lambda^2} K_0\left(\frac{\xi}{\lambda}\right)$$

In the high κ limit this is

$$\lim_{\lambda \gg \xi} \mathcal{E}_V = \frac{\Phi_o^2}{4\pi\mu_o\lambda^2} \ln\left(\frac{\lambda}{\xi}\right)$$

 Massachusetts Institute of Technology— 6.763 2005 Lecture 16

W: Electromagnetic EnergyNormal region of Volume Vn
 $M = \int_{V_n} \frac{1}{2\mu_o} B^2 dv$ Superconducting region of Volume Vs
 $W_s = \frac{1}{2\mu_o} \int_{V_s} \left[B^2 + \mu_o J_s \cdot (\Lambda J_s) \right] dv$ The absence of applied currents, in Method II, we have found that $dW = \int_V H \cdot dB dv$ Mereover, for the simple geometries H is a constant, proportional to the applied field. Therefore, $dW = H \cdot d \int_V B dv$ $dW = H \cdot d \int_V B dv$ $dW = H \cdot d \int_V B dv$

Entropy and the Second Law

The entropy S is defined in terms of the heat delivered to a system at a temperature T

$$dS \equiv \frac{dQ}{T}$$

Second Law of Thermodynamics:

For an isolated system in equilibrium $\Delta S = 0$

The first law for thermodynamics for a system in equilibrium can be written as

$$dU = T \, dS \, + \, V \vec{\mathcal{H}} \cdot d\vec{\mathcal{B}} \, - \, f_{\eta} d\eta$$

Then the internal energy is a function of S, B, and η

$$U = U(S, \mathcal{B}, \eta)$$

$$\downarrow \downarrow \downarrow \downarrow$$

$$T, \mathcal{H}, f_{\eta} \quad Conjugate \ variables$$

$$\underbrace{\text{Massachusetts Institute of Technology}}_{6.763\ 2005\ \text{Lecture 16}}$$

Concept of Reservoir and Subsystem

Because we have more control over the conjugate variables T, \mathcal{H}, f_{η} , we seek a rewrite the thermodynamics in terms of these controllable variables.

Isolated system = Subsystem + Reservoir

$$\Delta S_{\rm tot} = \Delta S_A + \Delta S_R$$

The change in entropy of the reservoir is

Image removed for copyright reasons.

Please see: Figure 6.12, page 286, from Orlando, T., and K. Delin. *Foundations of Applied Superconductivity*. Reading, MA: Addison-Wesley, 1991. ISBN: 0201183234.

Therefore, $\Delta S_{\text{tot}} = \frac{T_R \Delta S_A - \Delta Q_A}{T_R}$

 $\Delta S_R = \frac{\Delta Q_R}{T_R} = -\frac{\Delta Q_A}{T_R}$

$$\Delta S_{\text{tot}} = \frac{T_R \Delta S_A - \Delta U_A + V \vec{\mathcal{H}}_R \cdot \Delta \vec{\mathcal{B}} - f_\eta \Delta \eta}{T_R}$$

 Massachusetts Institute of Technology-6.763 2005 Lecture 16

Gibbs Free Energy

The change total entropy is then

$$\Delta S_{\text{tot}} = \frac{-\Delta G_A - f_\eta \Delta \eta}{T_R} \ge 0$$

where the Gibbs Free Energy is defined by

$$G_A \equiv -T_R S_A + U_A - V \vec{\mathcal{H}}_R \cdot \vec{\mathcal{B}}$$

At equilibrium, the available work is just ΔG (the energy that can be freed up to do work) and the force is

$$f_{\eta} = -\left. \frac{\partial G}{\partial \eta} \right|_{T, \vec{\mathcal{H}}}$$

Free Energy of subsystem decreases

$$\Delta G \leq \mathbf{0}$$

 Massachusetts Institute of Technology– 6.763 2005 Lecture 16

Gibbs Free Energy and Co-energy

The Gibbs free energy is

 $G = -TS + U - V\vec{\mathcal{H}} \cdot \vec{\mathcal{B}}$

The differential of G is $dG = -T dS - S dT + dU - V d\vec{\mathcal{H}} \cdot \vec{\mathcal{B}} - V \vec{\mathcal{H}} \cdot d\vec{\mathcal{B}}$ and with the use of the first law $dU = T dS + V \vec{\mathcal{H}} \cdot d\vec{\mathcal{B}} - f_{\eta} d\eta$ $dG = -S dT - V \vec{\mathcal{B}} \cdot d\vec{\mathcal{H}} - f_{\eta} d\eta$ Therefore, the Gibbs free energy is a function of T, \mathcal{H}, η At constant temperature and no work, then $dG|_{T,\eta} = -d\widetilde{W}$ the co-energy $f_{\eta} = -\frac{\partial G}{\partial \eta}\Big|_{T,\vec{\mathcal{H}}} = \frac{\partial \widetilde{W}}{\partial \eta}\Big|_{T,\vec{\mathcal{H}}}$ Note minus sign! <u>Massachusetts Institute of Technology</u> <u>6.763 2005 Lecture 16</u>

Phase Diagram and Critical Field

 $\Delta G < 0$ So that G is always minimized, the system goes to the state of lowest Gibbs Free Energy. At the phase boundary, Gs = Gn.

Critical Field for Type I

Recall that $dG = -V \vec{\mathcal{B}} \cdot d\vec{\mathcal{H}}$

In the bulk limit in the superconducting state B = 0 so that $dG_s = 0$

Likewise in the normal state $\vec{\mathcal{H}} = \mathbf{H}_{app}$ and $\vec{\mathcal{B}} = \mu_o \vec{\mathcal{H}}$ so that

$$dG_n = -V\mu_o \vec{\mathcal{H}} \cdot d\vec{\mathcal{H}}$$

Hence, we can write $d\left(G_s(\vec{\mathcal{H}},T) - G_n(\vec{\mathcal{H}},T)\right) = V \mu_o \vec{\mathcal{H}} \cdot d\vec{\mathcal{H}}$

Integration of the field from 0 to H gives

$$G_s(\vec{\mathcal{H}}, T) - G_n(\vec{\mathcal{H}}, T) = G_s(0, T) - G_n(0, T) + \frac{1}{2}V\mu_o\vec{\mathcal{H}}^2$$

and thus

 $G_{s}(\mathcal{H},T) - G_{n}(\mathcal{H},T) = \frac{1}{2} \mu_{o} \left(\mathcal{H}^{2} - H_{c}^{2}\right) V$ Massachusetts Institute of Technology– 6.763 2005 Lecture 16

