6.763 Applied Superconductivity Lecture 1

Terry P. Orlando

Dept. of Electrical Engineering MIT

September 8, 2005

Outline What is a Superconductor? Discovery of Superconductivity. Meissner Effect Type I Superconductors Type II Superconductors Theory of Superconductivity Eneneling and the Josephson Effect High-Temperature Superconductors Applications of Superconductors

Discovery of Superconductivity

"As has been said, the experiment left no doubt that, as far as accuracy of measurement went, the resistance disappeared. At the same time, however, something unexpected occurred. The disappearance did not take place gradually but (compare Fig. 17) *abruptly*. From 1/500 the resistance at 4.2°K drop to a millionth part. At the lowest temperature, 1.5°K, it could be established that the resistance had become less than a thousand-millionth part of that at normal temperature.

Thus the mercury at 4.2°K has entered a new state, which, owing to its particular electrical properties, can be called the state of superconductivity."

Heike Kamerlingh Onnes, Nobel Lecture

Image removed for copyright reasons.

Please see: Figure 1.1, page 3, from Orlando, T., and K. Delin. *Foundations of Applied Superconductivity*. Reading, MA: Addison-Wesley, 1991. ISBN: 0201183234.

Image removed for copyright reasons. Please see: http://www.superconductors.org/Type1.htm

http://www.superconductors.org/Type1.htm

BCS Theory of Superconductivity

The Nobel Prize in Physics 1972

•"for their jointly developed theory of superconductivity, usually called the BCS-theory"

Images removed for copyright reasons. Please see: http://nobelprize.org/physics/ laureates/1972/index.html

John Leon Neil Bardeen 1/3 of the prize USA USA UNA USA

USA

b. 1930

USA y University of Pennsylvania Philadelphia, PA USA b. 1931

John Robert

Schrieffer

•http://www.nobel.se/physics/laureates

b. 1908 d. 1991

ELECTRON-PHONON INTERACTIONS AND SUPERCONDUCTIVITY

Nobel Lecture, December 11, 1972

By JOHN BARDEEN

Departments of Physics and of Electrical Engineering

University of Illinois Urbana, Illinois

INTRODUCTION

Our present understanding of superconductivity has arisen from a close interplay of theory and experiment. It would have been very difficult to have arrived at the theory by purely deductive reasoning from the basic equations of quantum mechanics. Even if someone had done so, no one would have believed that such remarkable properties would really occur in nature. But, as you well know, that is not the way it happened, a great deal had been learned about the experimental properties of superconductors and phenomenological equations had been given to describe many aspects before the microscopic theory was developed.

13

	The No	bel Prize in Physics	1973
"for their experimental discoveries regarding tunneling phenomena in semiconductors and superconductors, respectively"		"for his theoretical predictions of the properties of a supercurrent through a tunnel barrier, in particular those phenomena which are generally known as the Josephson effects-	Image removed for copyright reasons. Please see: Figure 1 from http://nobelprize.org physics/laureates/1973/giaever-lecture.html
Images r	emoved for c	opyright reasons.	
se see: http://r	nobelprize.org	g/physics/laureates/1973/inde	x.html
1	1		
Leo Esaki	Ivar Giaever	Brian David Josephson	
1/4 of the prize	1/4 of the prize	1/2 of the prize	
Japan	USA	- United Kingdom	
IBM Thomas J. Watson Research Center Yorktown Heights, NY, USA	General Electric Company Schenectady, NY, USA	University of Cambridge Cambridge, United Kingdom	(Tents)
b. 1925	b. 1929 (in Bergen,	b. 1940 •http://www.nobel.se/ph	nysics/laureates

Large-Scale Applications				
Application	Technical Points			
Power cables	High current densities			
Current Limiters	Uses highly nonlinear nature of transition			
Transformers	High current densities and magnetic fields, has lower losses			
Motors/Generators	Smaller weight and size, lower losses			
Energy Storage Magnets	Need high fields and currentsSmaller weight and size, lower losses			
NMR magnets (MRI)	Ultra high field stability, large air gaps			
Cavities for Accelerators	High microwave powers			
Magnetic bearins	Low losses, self-controlled levitation			
Adapted from http://www.conectus.org/xxroadmap.html				

Recent Advances in Superconductivity

call for papers for 2006 MRS meeting

High-temperature superconductors have been featured at MRS meetings since their discovery in 1986. Twenty years later, the progress both on the fundamental understanding of these materials and the path towards their industrial applications has been impressive. First-generation wires are now routinely produced in kilometer lengths and used in a variety of large-scale prototypes of practical devices, while the scale-up of second-generation wires (RE123-based coated conductors) for industrial manufacturing is progressing at a fast pace. These achievements have been made possible by cutting-edge developments in materials science and technology. Coated conductors are composites of nanoscale layers of various materials and functionalities; and the understanding of issues concerning textured templates, complex oxide epitaxy, interfacial reactions, metal-oxide interfaces, crystal chemistry, defect characterization, and diffusion barriers is essential for the optimization of their properties. A topic of present large interest is the improvement of the in-field critical current by introduction of appropriate vortex pinning centers. It is now clear that large improvements can be obtained through the nano-engineering of several types of defects. As the technology approaches maturity, new problems such as ac losses and thermal stabilization will become increasingly important. Superconducting MgB2 also attracts large interest due to its high-transition temperature (highest among binary compounds), chemical simplicity, low cost of the raw materials, and absence of weak-link limitations that allows the use of mature powder-in-tube technology to fabricate long wires. The inclusion of MgB2 presentations in the symposium will bring together both communities and will encourage the discussion of problems that are common to all superconducting wires. <http://www.mrs.org/meetings/spring2006/program/s06_cfp_hh.html>

Small-Scale Applications			
Application	Technical Points		
Microwave filters in cellular stations	Low losses, smaller size, sharp filtering		
Passive microwave devices, Resonators for oscillators	Lower surface losses, high quality factors, small size		
Far-infrared bolometers	nonlinear tunneling SIS curves, high sensitivity		
Microwave detectors	Uses nonlinear tunneling SIS curves, high conversion efficiency for mixing		
X-ray detectors	High photon energy resolution		
SQUID Magnetometers: Magneto-encephalography, NDT	Ultra-high sensitivity to magnetic fields		
Voltage Standards	Quantum precision		
Digital Circuits (SFQ)	Up to 750 GHz, ultra-fast, low-power		
Adapted from http	p://www.conectus.org/xxroadmap.html		

