GalnNAs Lasers

6.772 John Hennessy May 13, 2003

Courtesy of John Hennessy. Used with permission.

Outline

Applications, why the interest?

Previous option (InGaAsP)

Problems

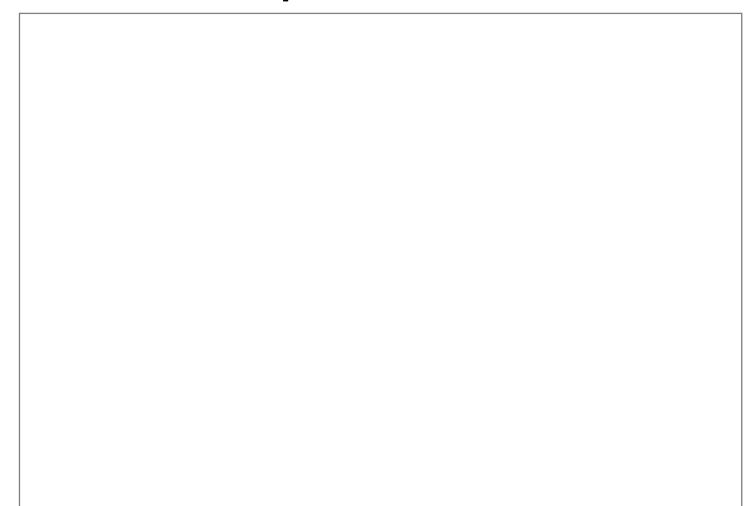
GalnNAs Material Properties

Benefits

- Research Results
 - □ Issues and future work

Applications

Network capacity is increasing exponentially


- Gilder's Law "Communication Capacity will triple every 12 months"
- Need long wavelength, high speed, low cost VCSEL

 Advantages of long wavelengths (>1300nm) relative to short wavelengths (850nm)

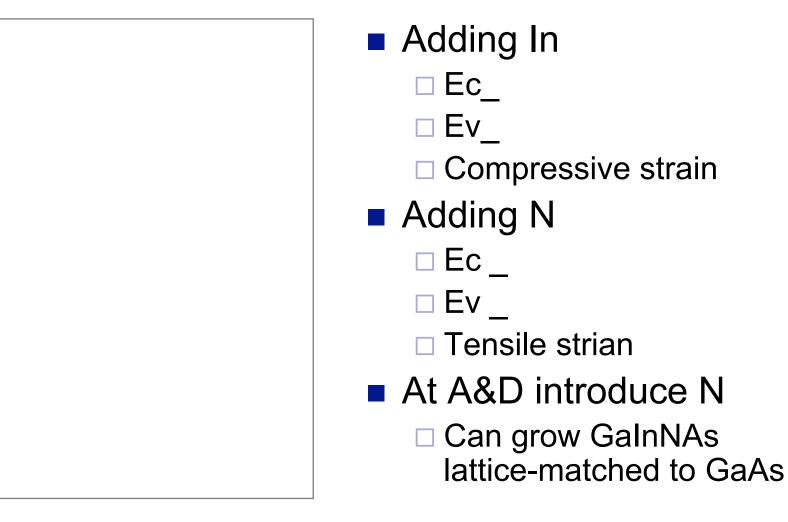
Material Properties

InGaAsP as an Option

- InGaAsP/InP is the current material system in use in VCSELs for 1.3/1.55 μm
- Major problems and disadvantages:
 - High cost
- Poor T performance:
 - □ Small band offset (leads to To~70K)
 - DBRs have low thermal conductivity
- Unsatisfactory VCSEL performance:
 - Poor DBR mirrors
 - Elaborate Structure/More cost
- GalnNAs offers several benefits

Compared to GalnNAs

- Larger refractive index differences

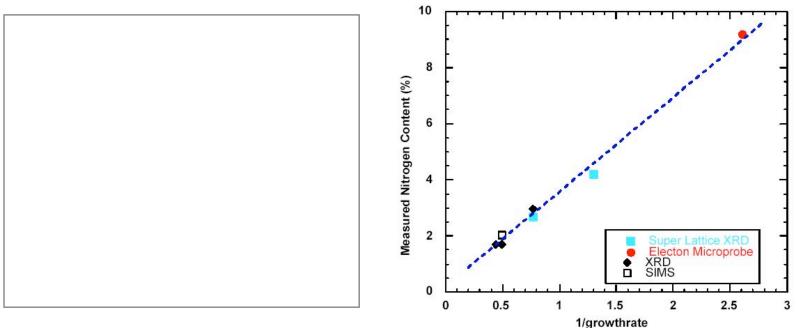

 Step difference ∆n(AlGaAs)> ∆n(InGaAsP)
 Easier to make high reflectivity DBRs

 Thermal conductivity

 Bottom DBR acts as better heat sink

 Cheaper GaAs substrates
- Larger conduction band offset
 - Better temperature performance

Material Properties



Material Properties

- Much greater ΔEc for GalnNAs
 - -Suppresses electron overflow from QW
 - -dramatically improves temperature characteristics

Growth

- Grown by MBE with RF nitrogen plasma
- N incorporated with unity sticking coefficient
 - □ Better yield and reproducibility

VCSEL
 structure
 Mesa etch
 AlOx aperture

- First generation VCSEL design
- 1200nm output
 - CW at room temperature
 - □ J_{th}≈2kA/cm²
 - □ Slope efficiency≈0.05W/A

- Add Sb to well layer
 More In content
- Add N, Sb to barrier layer
 - □ Strain compensation
- Increase output wavelength
- Added complexity

Difficulties

Significant defect related recombination

Poor solubility of N in GaAs

5 component system

Harder to make Bragg mirrors by MBE

Conclusion

- □ Good T characteristics
- All epitaxial growth
- Best contender for low-cost telecom VCSELs

Thank you

References

- Harris, J.S., Jr., GalnNAs, a new material for long wavelength VCSELs, Advanced Semiconductor Lasers and Applications/Ultraviolet and Blue Lasers and Their Applications/Ultralong Haul DWDM Transmission and Networking/WDM Components, 2001 Digest of the LEOS Summer Topical Meetings, 2001.
- Harris, J.S., Jr., et al., *GalnNAs: A New Material in the Quest for Communications Lasers.,* Mat. Res. Soc. Symp. Proc. Vol. 722.
- Kondow, M, et al., *GalnNAs: a novel material for long-wavelength semiconductor lasers.*, IEEE Journal on Selected Topics in Quantum Electronics , Volume3, Issue 3 , Jun 1997, p719 -730.
- Kondow, M.; Kitatani, T., *Progress in research into mixed group-V nitride alloys.,* IEE Proceedings on Optoelectronics, Volume 150, Issue 1, Feb 2003, p9 -11.
- Wonill Ha, et al., *Long wavelength GalnNAs(Sb) lasers on GaAs.,* Indium Phosphide and Related Materials Conference, 2002. IPRM. 14th , 2002, p381 -384.
- Fischer, M., et al., *GalnAsN based lasers for the 1.3 and 1.5 _m wavelength range.,* Indium Phosphide and Related Materials, 2001. p101 -104.
- Kondow, M., et al., *GalnNAs: A Novel Material for Long-Wavelength-Range Laser Diodes with Excellent High-Temperature Performance.,* Japanese Journal of Applied Physics, Volume 35, p1273-1275.