Techniques of GaN crystal growth

Presenter : Fu Xiaoling

Courtesy of Fu Xiaoling. Used with permission.

Outline

Major properties of GaN
Significance of growing bulk GaN crystal
Methods we have achieved
Challenges we still have
GaN devices impact on the future

Properties of GaN

- 1.high melting point (2791K) at a correspondingly high equilibrium pressure of nitrogen(45Kbar)
- 2. wide, direct bandgap of 3.39ev
- 3.high thermal conductivity
- 4.high electron saturation velocity

Why GaN ?

Great potential applications in highpower electronics capable of operation at elevated temperatures and high frequencies

Difficulties we have met

- Difficult to get native substrates in high quality and large quantities
- Even the slight lattice mismatch induce misfit dislocations at the interface, which could develop cracks in crystals that degrade the performance of devices.

Substrates we have used

- Have tried sapphire(Al2O3), SiC, MgO, MgAl2O4, LiAlO2,LIGaO2, ZnO, MoS2 et al.
- Most common use: sapphire
 Better quality in many cases
 Available up to inches in diameter
 Inexpensive

Main Methods we have got
Vapor phase epitaxy(HVPE)
Molecular beam epitaxy (MBE)
Metalorganic chemical vapor deposition(MOCVD)

Crytal growth of GaN (HVPE)

- Long history and widely used because of high growth rate
- Hydride vapour phase epitaxy(HVPE) attract renewed interest to produce thick, strain-relieved buffer layers

Comments on VPE

- Highly suitable for GaN films due to high growth rate and bandgap engineering in near-UV spectral range is possible
- However, the very high growth temperature of VPE processes, between 1000 and 1200 degrees make Si and O impurity concentration high, which makes electron concentration high
- Growth rate:100um/h have been achieved

Crystal growth of GaN(MBE)

 Nitrogen gas cannot be directly used for GaN growth.
 Nitrogen (N₂) must be dissociated prior to reaching the surface of the substrate in order to incorporate in GaN.

2. Low temperature

Comments on MBE

Advantages:

- High purity growth
- Hydrogen free environment
- Possibility to use plasma or Laser assisted growth
- Disadvantages:
- Need ultra-high vacuum
- Low growth rate
- Very expensive

Crystal growth of GaN(MOCVD)

- ✓ Basic MOCVD reaction describing GaN deposition process: Ga(CH3)3+NH3→GaN
- For high optical quality material it's necessary to grow GaN at temperatures as high as 1080 degrees.
- The deposition of a low temperature "buffer"layer of AlN on sapphire substrates was a key discovery in improving surface morphology and crystalline quality of GaN

Comment on MOCVD

Advantages:

- High growth rate
- Large-area growth capability
- Very high quality film
- Intermediate cost

Disadvantages:

- High temperature
- Tendency to preact

Various new technologies

- Modified VPE process: Sublimation sandwich method(SSM):
- good structural quality for films grown at very high rates
- Lateral epitaxial overgrowth(LEO) by MOCVD:
- Reduce defect density tremendously, but only in the windows, not on the mask
- enable the controlled deposition of low-dimensional microstructures such as quantum wires and dots, don't cause any damage or contamination at sample surface

Challenges

Need maturer technology:

- Larger size
- Defect free (Has been reduced from 10⁸-10¹⁰ cm⁻² to 10⁷ cm⁻² not low enough)
- Low cost
- Doping issues

Impact on the future

Carable the fabrication of LEDS, lasers, detectors, transistors and so on
 Cave lots of energy
 Carable Harmless

Major References

- Fabrication and performance of GaN electronic devices, Materials Science and Engineering: R: Reports, Volume 30, Issues 3-6, 1 December 2000, Pages 55-212
 S. J. Pearton, F. Ren, A. P. Zhang and K. P. Lee
- Progress and prospects of group-III nitride semiconductors, Progress in Quantum Electronics, Volume 20, Issues 5-6, 1996, Pages 361-525
 S. N. Mohammad and H. Morkoç
- GaN heteroepitaxial growth techniques, Journal of Microwaves and Optoelectronics, Vol.2, No.3, July 2001, P22-29
 Nasser N.M, Ye Zhi zhen, Li Jiawei and Xu Ya bou
- Growth and applications of Group III-nitrides, Journal of applied Physics, 31(1998) 2653-2710
 O Ambacher
- Nitride semiconductors—impact on the future world, Journal of Crystal Growth, Volumes 237-239, Part 2, April 2002, Pages 905-911 Isamu Akasaki

Thanks for your kind attention!