Novel Passivation Technology for GaAs PHEMTs

Anita A. Villanueva May 12, 2003

Courtesy of Anita A. Villanueva. Used with permission.

Outline

• PHEMT Passivation: Current State

The Problem

Motivation for Further Study

- HD-ICP-CVD: A Novel Solution
 - Experimental
 - Results
- Conclusions

Passivation: Current State

- Silicon nitride (Si_xN_y) passivation is used on devices to prevent environmentallyinduced degradation
- Currently, PECVD silicon nitride is widely used in GaAs PHEMT fabrication processes

Problem: Device Sensitivity

- For PHEMTs, device characteristics are very sensitive to passivation processes
 - PECVD nitride passivation incurs reduction in breakdown voltage [1]
 - Surface damage due to plasma ion bombardment can cause decreases in G_M and I_D [2]

[1] Chou, et al (2002), [2] Hattori, et al (1997)

Problem: Degradation

- Reliability is major concern in RF power GaAs PHEMTs
- Current passivation methods are not sufficient to inhibit device degradation
 - Presence of hydrogen induces degradation in GaAs PHEMTs [3]
 - Cracks in nitride allow for moisture path to devices, can cause circuit failure [4]

[3] Mertens et al, 2002. [4] Roesch, et al. 2000.

Motivation for Study

- An alternative deposition technique for passivating GaAs PHEMTs is needed
- Desire technique with the following:
 - incurs less change on device characteristics
 - improves device reliability
- Research reported by Chou, et al (2003) address this problem

Experimental

- HD-ICP-CVD (Highdensity inductivelycoupled plasma chemical vapor deposition) system
- Ammonia-free process using only gaseous SiH₄ and N₂

Experimental

Parameters	PECVD	HD-ICP-CVD
Deposition Temp (°C)	250	170
Deposition Rate (Å/min)	~100	~500
Wet Etch Rate (Å/min)	600-1000	50-240
Gas Chemistry	SiH ₄ /NH ₃ /N ₂	SiH ₄ /N ₂
Hydrogen content (at%)	20-25	< 15

Results

Less change in BV after passivation

 G_M, I_D decreases can be recovered by thermal annealing

Results

- Compared HD-ICP-CVD devices with two groups of PECVD devices
- Ø BV-F_T product is always higher for HD-ICP-CVD devices

Conclusions and Review

Overall effects of HD-ICP-CVD:

- less reduction in BV
- allows for recovery of G_M and I_D
- higher product of BV and F_T
- provides better hermiticity

→HD-ICP-CVD has good potential to be used for next-generation nitride passivation for GaAs PHEMTs