Energy Flow in Semiconductor Devices and its Applications for Semiconductor Laser Diodes

6.772/SMA5111 Term Paper

Ronggui Yang

Massachusetts Institute of Technology Cambridge, MA 02139

Courtesy of Ronggui Yang. Used with permission.

Outline

- Motivation
- Energy Source in Semiconductor Devices
- Internal Cooling in a p-n Diode
- **❖** Applications to Laser Design (ICICLE)
- Summary

Heat/Energy Flow in Semiconductor Devices

Mid-IR laser SOI MOSFET Thermoelectric Cooler

Smaller, Faster, Denser & more powerful ——> More Heat

Understanding heat/energy flow in semiconductor devices, helps understanding of:

- > Thermal-induced failure in semiconductor devices
- > Energy conversion in thermoelectric / thermionic devices

Approaches:

- Coupled Electron-phonon Boltzmann Transport Equation
- > Electrohydrodynamics or Energy Transport Equations
- > Drift-Diffusion Equations (Thermodynamic Approach)

Heating Effects in Semiconductor Lasers

Maximum optical output power limited by active layer temperature rise

Threshold current density (left axis) and lasing wavelength (right axis) versus operating temperature for λ =1.2 μ m InGaAs laser.

T. K. Sharma, et al. IEEE Phot. Tech. Lett. 14, 887 (2002).

High temperature leads to:

- Increased threshold current
- Wavelength drift
- Decreased output power
- Decreased device lifetime

Temperature Control in Optoelectronic Devices

Traditional BiTe Thermoelectric Cooler

- Cooling power density ~10 W/cm²
- Difficult to integrate due to lack of processing technology
- Device mounted on cooler

Integrated Superlattice Cooler

- Integration possible
- Cooler can be grown near device

A. Shakouri and J. E. Bowers, *Appl. Phys. Lett.* **71**, 1234 (1997)
R. Venkatasubramanian, et. al, *Nature* **413**, 597-602 (2001)
T.C. Harman, et al, *Science* **297**, 2229-2232 (2002)

Internal Cooling Effects

 Device structure is such that the operating current also produces cooling

Non-isothermal Carrier Flow

- Thermodynamics Approach

Transport under both Electrical and Temperature Field

Particle Flux:
$$\vec{J}_h = \mu_h p(\nabla E_{fh} - P_h \nabla T)$$

$$\vec{J}_e = -\mu_e n(\nabla E_{fe} + P_e \nabla T)$$

Current Flux:
$$J_h = e\vec{J}_h$$

$$J_e = -e\vec{J}_e$$

Heat Flux:
$$\vec{J}_h^Q = eP_hT\vec{J}_h - k_h\nabla T$$

$$\vec{J}_{e}^{Q} = eP_{e}T\vec{J}_{e} - k_{e}\nabla T$$

Energy Flux:
$$\vec{J}_h^u = \vec{J}_h^Q - eE_{fh}\vec{J}_h$$

$$\vec{J}_e^u = \vec{J}_e^Q + eE_{fe}\vec{J}_e$$

$$\frac{\partial u}{\partial t} + \nabla \vec{J}^u = 0$$

Energy Source

$$C\frac{\partial T}{\partial t} = \nabla(k\nabla T) + \dot{q}$$

Energy Source in Semiconductor Devices

$$\dot{q} = -e\nabla[(\pi_e + E_{fe})\vec{J}_e + (\pi_h + E_{fh})\vec{J}_h] + e[E_{fh} - T\frac{\partial E_{fh}}{\partial T}]\frac{dp}{dt} - e[E_{fe} - T\frac{\partial E_{fe}}{\partial T}]\frac{dn}{dt}$$

Definition of Peltier Coefficient:

$$\pi = PT = \frac{\int v^2 \tau (E - E_f) \frac{\partial f_o}{\partial E} D(E) dE}{e \int v^2 \tau \frac{\partial f_o}{\partial E} D(E) dE}$$

Maxwell-Boltzmann
$$\pi_e = P_e T = \frac{E_c - E_{fe}}{k_B T} + \frac{3}{2} k_B T + \pi_e^0$$
 $\pi_h = P_h T = \frac{E_{fh} - E_v}{k_B T} + \frac{3}{2} k_B T + \pi_h^0$ where $\pi_e^0 = (r+1) \frac{k_B T}{e}$ $\pi_h^0 = (r+1) \frac{k_B T}{e}$

This r is related to the energy-dependent electron relaxation time r=-1/2 for acoustic-phonon scattering and r =3/2 for impurity scattering

$$\dot{q} = -(E_g + 3k_B T)\nabla \vec{J}_e - \nabla(\pi_h^0 \vec{J}_h + \pi_e^0 \vec{J}_e) + \frac{\nabla E_v}{e} J$$

Recombination Thompson Resistive heat

p-n Diode under Forward Bias

Increase Net Cooling

- > Short diodes
- > Radiative recombination

Why & How Large is the Cooling

Cooling at the Junction

In SCR:
$$\dot{q} = \vec{E} \cdot \vec{J}$$

Total Cooling in the junction:

$$Q = \int_{-x_p}^{x_n} \dot{q} dx = \frac{1}{2} E_{\text{max}} J_{\text{max}}$$
$$= J(\phi_{\text{hi}} - V)$$

- Every junction causes heating or cooling.
- Cooling at the p-n junction is bias-dependent
 - ✓ Cooling under forward bias
 - ✓ Heating under reverse bias

Optimizing Cooling Effect in Lasers

Structure

Conventional SCH

Injection Current Internally Cooled Light Emitter

Conclusions

- Thermal effects is very important for active devices, such as transistors and lasers
- Energy source term is derived based on the thermodynamic approach
- Internal cooling effect is found in p-n diode under forward bias
- The internal cooling effect has been utilized for semiconductor laser design.

Thank you for your attention!