
6.772/SMA5111 - Compound Semiconductors 

Supplement 1 - Semiconductor Physics Review - Outline 

• The Fermi function and the Fermi level 
The occupancy of semiconductor energy levels 

• Effective density of states
Conduction and valence band density of states 

1. General 
2. Parabolic bands

• Quasi Fermi levels
The concept and definition 

Examples of application 
1. Uniform electric field on uniform sample 
2. Forward biased p-n junction
3. Graded composition p-type heterostructure 
4. Band edge gradients as effective forces for carrier drift

Refs:  R. F. Pierret, Semiconductor Fundamentals 2nd. Ed., (Vol. 1 of the Modular Series 
on Solid State Devices, Addison-Wesley, 1988); TK7871.85.P485; ISBN 0-201-12295-2. 

S. M. Sze, Physics of Semiconductor Devices  (see course bibliography)
Appendix C in Fonstad  (handed out earlier; on course web site) 
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Fermi level and quasi-Fermi Levels - review of key points 

Fermi level: In thermal equilibrium the probability of finding an 
energy level at E occupied is given by the Fermi function, f(E): 

(1 +e1 [E-E f ] / kTf (E) = )
where Ef is the Fermi energy, or level.  In thermal equilibrium Ef is 
constant and not a function of position. 

The Fermi function has the following useful properties: 

f (E) ª e-[E-E f ] / kT for (E - E f ) >> kT

f (E) ª 1- e[E-E f ] / kT for (E - E f ) << -kT

f (E f ) = 1/2 for E = E f

These relationships tell us that the population of electrons decreases 
exponentially with energy at energies much more than kT above the 
Fermi level, and similarly that the population of holes (empty 
electron states) decreases exponentially with energy when more than 
kT below the Fermi level. 
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A final set of useful Fermi function facts are the values of f(E) in the 
limit of T = 0 K: lim f (E) =1 for E < E f

T = 0

f (E) = 1/2 at E = E f

lim f (E) = 0 for E > E f
T = 0

Effective densities of states: we can define an effective density of 
states for the conduction band, Nc, as 

• -[E-Ec ] / kT dEN ≡ Ú r(E)ec Ec

and an effective density of states for the valence band, Nv, as 

[E-Ev ] / kT dEN ≡ Ú
Ev

r(E)ev -•

where r(E) is the electron density of states in the semiconductor. 
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If the energy bands are parabolic, i.e., when the density of states 
depends quadraticly on the energy away from the band edge, we find 
simple relationships between the densities of states and the effective 
masses: 

3If r(E) = 2(m*) (E - Ec ) p 2h3 when E > Ec,e

]2kT h
3 / 2

then N = 2 2p m*
c [ e

*and if r(E) = 2(mh )3(E - E) p 2h3 when E < Ev,v

]2kT h
3 / 2*then N = 2 2p mhv [

When (Ec-Ef)>>kT, we can write the thermal equilibrium electron 
concentration in terms of effective density of states of the conduction 
band and the separation between the Fermi level and the conduction 
band edge, Ec, as: n (x) = N (x)e-[Ec (x )-E f ] / kT

o c

Similarly when (Ef-Ev)>>kT we can write:
po(x) = N (x)e-[E f -Ev (x )]/ kT

v

   Note: In homogeneous material Nc, and Nv do not depend on x. 
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Quasi-Fermi levels: When a semiconductor is not in thermal 
equilibrium, it is still very likely that the electron population is at 
equilibrium within the conduction band energy levels, and the hole 
population is at equilibrium with the energy levels in the valence 
band.  That is to say, the population on electrons is distributed in the 

-[E-E fn ] / kTconduction band states with the Boltzman factor: e
Here Efn is the effective, or quasi-, Fermi level for electrons. 

Similarly, there is a quasi-Fermi level for holes, Efp, and the holes are 
distributed in the valence band states as: e-[E fp -E ] / kT

The quasi-Fermi levels for electrons and holes, Efn and Efp, are 
not in general equal.  To find them we usually begin with n(x) and 
p(x), and write them in terms of the conduction and valence band 
densities of states and the quasi-Fermi levels: 

For example, we write n(x) = N (x)e-[Ec (x)-E fn (x )]/ kT
c

This then defines E fn : E fn (x) ≡ E (x) - kT ln[N (x) / n(x)]c c

We define E fp similarly : E fp (x) ≡ E (x) + kT ln[N (x) / p(x)]v v
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Quasi-Fermi levels, cont.: 
A very  important finding involving quasi-Fermi levels is that we 

can write the electron and hole currents in terms of the gradients of 
the respective quasi-Fermi levels, at least in the low field limit where 
drift mobility is a valid concept.  We find: 

J (x) = m n(x) ∂E fn (x)e
and

n ∂x

J (x) = mh p(x) ∂E fp (x) ∂xp

Examples:
A. Uniformly doped n-type semiconductor with uniform E-field 

At low to moderate E-fields, the populations are not disturbed 
from their equilibrium values, and we have 

n(x) ª no ª Nd and p(x) ª po = ni
2 /Nd

Also, E fn ª E fp ª E f - qf(x), so :

J ª m n (-q∂f ∂x) = qm n F and J ª qmh poFe e o e o x e x

As expected, the currents are the respective drift currents. 
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B.  P-side of forward biased n+-p junction, long-base limit:

Diode diffusion theory gives us n(x) on the p-side*:
2n(x) = nop[(eqvab / kT -1)e-x / Le +1], where nop = ni NAp

When vAB >> kT, and x is not many Le, we can approximate 

eqvab / kT -x / Le
n(x) as : 

n(x) = nop[(eqvab / kT -1)e-x / Le +1] ª n eop

from which we find: 
E fn (x) = E + kT ln[n(x) / N ]c c

ª E + kT ln[n /N ] + qvab - kT x /Lc o c e

ª E fo + qvab - kT x /Le

E
We see that Efn(x) is qvAB higher than the equilibrium Fermi level, 

fo, at the edge of the depletion region on the p-side, and decreases 
linearly going away from the junction.  Farther away from the junction, 
where x is many Le, n(x) approaches nop, and Efn(x) approaches Efo.

Finally, notice that for low-level injection, p(x) ≈ ppo, and Efp ≈ Efo.
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Quasi-Fermi levels - Illustrating examples A and B 

Figure C-8 from Fonstad, Microelectronic Devices and Circuits with
quasi-Fermi levels added: 

Example A: 

Example B: 
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Efn



C.  Graded composition p-type heterostructure with uniform low 
level electron injection. 

Assume the grading is from Eg1, X1 @ x = 0, and Eg1, X1 @ x = L. 

E (x) = Eg1 + x(Eg 2 - Eg1) / L; c(x) = c1 + x(c2 - c1) / Lg

In thermal equilibrium the Fermi level, Efo, is flat, and the valence 
band edge is flat: 

E = E fo - kT ln(Nv /NAp ) v

whereas the conduction band edge slopes: E (x) = E - E (x)c v g 

With low-level electron injection, n(x) ≈ n’  (>>npo): 
Hole population is changed insignificantly, and Efp(x) ≈ Efo 

Electron population is now n’, and so 

E fn (x) = E + kT ln[n' / N ] ª E + E (x) + kT ln[n' / N ]c c v g c

Using this to get Je(x), we find 
J (x) ª m n' ∂E (x) ∂x = q m n' Fe,eff , where Fe,eff ≡ q-1∂E (x)e e g e g ∂x

From this we see that the band gap grading acts like an effective 
electric field acting on the electrons (but not on the holes)! 
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Quasi-Fermi levels - Illustrating example C 

Example C: Fe,eff ≡ q-1∂E (x) ∂x = - (Eg1 - Eg2) /qLc

Ec(x)

Eg1

EL g2

Efo

Ev(x)
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D.  General meaning of band-edge gradings 

In general we can write the electron quasi-Fermi level as: 

E fn (x) = E (x) + kT ln[n(x) / N (x)]c c

and thus in general we can write the electron current as: 

J (x) = m n(x) ∂E fn (x)e e ∂x

∂n(x) n(x) ∂N (x)c c= m n(x)
∂E (x)

+ m kT + m kTe e
∂x e

∂x N (x) ∂xc

Ê
typically

small

= s e

q-1∂E (x)
+ De Á

∂n(x)
+

n(x) ∂Nc (x)
˜
ˆ

c

∂x Ë ∂x N (x) ∂x ¯c

Drift Term Diffusion Term 

[Note: In getting this we have used the Einstien relation and definition 
of conductivity: 

m kT = q De, and s = q m n(x) ]e e e 

From our final result we see that the gradient in the conduction band 
edge is the force leading to electron drift, while the gradient in the 
carrier and density of states concentrations are the diffusion force. 
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D. cont.

We obtain the corresponding result for holes if we similarly 
substitute valence band quantities for conduction band quantities. 
Begin with: 

E fp (x) = E (x) + kT ln[p(x) / N (x)]v v

and thus 
Jh (x) = mh p(x) ∂E fp (x) ∂x

∂p(x)
+ mh kT

p(x) ∂N (x)v v= mh p(x)
∂E (x)

+ mh kT
∂x ∂x N (x) ∂xv

smallq-1∂E (x)
+ Dh Á

Ê∂p(x)
+

p(x) ∂N (x)ˆ
typically

v v= s h ˜
∂x Ë ∂x N (x) ∂x ¯v

Drift Term Diffusion Term 

Now we see that the gradient in the valence band edge is the force 
leading to hole drift, while the gradient in the carrier and density of 
states concentrations are the diffusion force.

Summarizing, the conduction and valence band-edge gradients can 
be viewed as effective electric fields for electrons and holes, respectively: 

Fe,eff = q-1∂E (x) and F∂x h,eff = q-1∂E (x)c v ∂x
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