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Outline

> Motivation for using feedback

> The uses of (linear) feedback

> Feedback on Nonlinear Systems
• Quasi-static systems
• Oscillators
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Why use feedback?

> For actuators, how do you 
know when you have 
actuated?

• You can calibrate/calculate/etc., 
but what about drifts?

> Adding a sensor can tell you 
where you are

> Combining the sensor + 
actuator with feedback can 
keep you where you are

An optical attenuator 
that uses
• MEMS actuator
• Senses optical output
• Uses feedback to 
control attenuation

Image removed due to copyright restrictions.
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Why use feedback?

> For sensors, feedback can 
be used to enhance sensor 
response

• E.g., keep sensitivity constant

> Must add an actuator to do 
this

An accelerometer that 
uses
• MEMS tunneling sensor
• Electrostatic actuation
• Uses feedback to control 
tunneling current (and 
thus gap)

Figure 1 on p. 426 in: Liu, C.-H., and T. W. Kenny. "A High-precision,
 Wide-bandwidth, Micromachined Tunneling Accelerometer." Journal of
 Microelectromechanical Systems 10, no. 3  (September 2001): 425-433.
 © 2001 IEEE.

Figure 3a) on p. 426 in: Liu, C.-H., and T. W. Kenny. "A High-precision,
 Wide-bandwidth, Micromachined Tunneling Accelerometer." Journal of 
Microelectromechanical Systems 10, no. 3 (September 2001): 425-433.
 © 2001 IEEE.
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Feedback in MEMS

> Since MEMS is often concerned with making sensors 
for measurements or actuators to do something, 
feedback is integral to the subject

> Here we will examine some of the basic uses of 
feedback

• Limit sensitivity to variations
• Speed up system
• Stabilize unstable systems

> At the end, we will look at feedback in nonlinear 
systems, which is useful for making oscillators

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. 
MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].



JV:  2.372J/6.777J Spring 2007, Lecture 17 - 6
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> Motivation for using feedback

> The uses of (linear) feedback

> Feedback on Nonlinear Systems
• Quasi-static systems
• Oscillators
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Example: A MEMS hotplate

> Used for gas sensor

> Heat up active material, which 
reacts with gas and changes 
resistance

> Thermal MEMS is used because
• Low power
• Fast
• Arrayable

Image removed due to
copyright restrictions.
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The Canonical Feedback System
> In controls, terminology refers to the plant, the controller, the 

state sensor, and the comparison point

Example: micro hotplate
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Adding Noise and Disturbances

> Noise corrupts the sensor output

> Disturbances modify the control input to the plant

> In some cases, what we want to measure is the disturbance (a 
feedback-controlled accelerometer)
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Linear Feedback: Black’s Formula
> For a LTI system, we can use Laplace transforms to create an 

algebraic closed-loop transfer function
• Assume sensor has (perfect) unity transfer function

)(
)()(1

)()()( sX
sKsH

sKsHsX inout ⋅+
⋅

=

⇓

Black’s formula loop gain
inforward ga

sX
sX

in

out

−
=

1)(
)(

1 1+_ Error

Set point

ControlK(s)
1

H(s)

Output
1

Feedback Path
[ ])()()()()( sXsXsKsHsX outinout −⋅⋅=

)()( sXsX outin [ ])()()( sXsXsK outin −⋅

)(sX out
)(sX in

Image by MIT OpenCourseWare.
Adapted from Figure 15.3 in Senturia, Stephen D.
Microsystem Design . Boston, MA: Kluwer Academic
Publishers, 2001, p. 399. ISBN: 9780792372462.

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. 
MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].



JV:  2.372J/6.777J Spring 2007, Lecture 17 - 11

Open-Loop Operation
> Control hot plate via calibration

• Assume hotplate has 1st-order response 
with s0~400 rad/s (f0~65 Hz)

• Assume controller has no dynamics

> Works great if there are no disturbances 
or drifts in system

> Any deviations cause steady-state error
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Open-Loop Operation
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Feedback use #1: limit sensitivity to variations
> Add in term 

proportional 
to error

> This is called 
proportional 
control

( ) ( )

0 0
0

0

0 0 0 0
0 0

0 0

0 0 0 0

0 0 0 0 0 0

1
1 1

1

1 1

1 1

hotplate set room

set room

hotplate set room

HKT T T
HK HK

A s K
s s T TA s A sK K

s s s s
A K s s sT T T

s s A K s s A K

= +
+ +

⋅
+

= +
+ ⋅ + ⋅

+ +
+

= +
+ + + +Closed-loop TF

H(s)K(s)
+

-

+

+
Tset Thotplate

Troom

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. 
MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].



JV:  2.372J/6.777J Spring 2007, Lecture 17 - 14

Close the loop
> Error 0 as K0 increases, 

despite
• Variations in device (A0)
• Variations in plant (K0)
• Disturbances (Troom)

> In limit of large K0, system 
responds “perfectly”

• Though DC error never goes 
exactly to zero
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Feedback use #2: increase system bandwidth

> Settling time goes down

> Bandwidth goes up
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Controlling a 2nd-order system
> Vibration sensor

• Really just an z-axis accelerometer

> Use feedback to keep gap constant

> In this case, control signal 
measures vibration

> Mechanical “plant” is a SMD
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•Set Q=1/2 (critically damped)
•Set k=1 for convenience

Figure 4 on p. 435 in: Bernste in, J., R. Miller, W. Kelley, and P. Ward.
 "Low-noise MEMS Vibration Sensor for Geophysical Applications." Journal of
 Microelectromechanical Systems 8, no. 4 (December 1999): 433-438.
 © 1999 IEEE.

Figure 6 on p. 435 in: Bernste in, J., R. Miller, W. Kelley, and P. Ward.
 "Low-noise MEMS Vibration Sensor for Geophysical Applications." Journal of
 Microelectromechanical Systems 8, no. 4 (December 1999): 433-438.
 © 1999 IEEE.
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Proportional control of 2nd-order system
> Use ideal controller K(s)=K0

> This gives us two overall poles:
• Two from SMD H(s)
• None from controller K(s)

> Some results are same as 1st-
order system

• Decreasing DC error as K0
increases

• System speeds up

> Some differences:
• Q of closed-loop response 

increases with increasing DC 
gain

> This means that our critically 
damped system is now 
underdamped

• This can be bad or fatal for our 
system
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Control of complex systems

> Dynamics of closed-loop system are determined by 
H(s)K(s)

> Thus, behavior seen with 2nd-order SMD system will 
also occur with 1st-order thermal system coupled to 
1st-order controller

> What happens when we add an additional pole?
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Single-Pole Controller (Real amp)
> Take SMD and control 

with 1st-order controller

> The system now has 
three poles

> When going to large K0, 
the system goes 
unstable

• This happens if one of 
the roots has real 
positive part

> Routh test can be used 
to find maximum gain
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2nd-order vs. 3rd-order systems

> Stable system at all loop 
gains

> Unstable system at 
sufficiently high loop 
gain

15

10

5

-5

-3 -2 -1 0 1

-10

-15

0

Real

Im
ag

in
ar

y

-5

5

0

Im
ag

in
ar

y

τ = 1^

-3-6 -5 -4 -2 -1 0 1 2
Real

Image by MIT OpenCourseWare.
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Effect of controller bandwidth
> Controller bandwidth < Plant 

bandwidth causes controller to 
dominate overall response
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> Controller bandwidth > Plant 
bandwidth causes plant to 
dominate overall response
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PI control

> Add pole at s=0

> This gives K(0) ∞
• And  thus no DC error

> Benefits
• As long as β≠0, will get 

perfect DC tracking, but 
it may take awhile

• Completely insensitive 
to changes in plant at 
DC

> Drawbacks
• Additional pole means 

possibility of ringing 
and instability
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PID control

> Final generic term is to 
add in differential 
feedback

• Anticipate future

> “Tame” ringing and 
instability due to 
integral and 
proportional control

> Methods exist to tune 
PID controllers

⎟
⎠
⎞

⎜
⎝
⎛ ++= s

s
KsK γβ1)(

:Control (PID) alDifferenti-Integral-alProportion

0

10

8

6

4

2

0

-2

-4

-6

-8

-10
-1.5 -1 -0.5 0 0.5

Real Axis

Im
ag

in
ar

y 
A

xi
s

γ = 0.03

β = 2.2 γ = 0

β = 2.2

Image by MIT OpenCourseWare.

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. 
MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].



JV:  2.372J/6.777J Spring 2007, Lecture 17 - 25

Stabilization of unstable systems

> Use of feedback 
#3: Stabilize an 
unstable system

> Stabilize 
electrostatic 
actuator beyond 
pull-in

> Most approaches  
use feedback to  
approximate 
charge control

Piyabongkarn (2005), IEEE Trans. Control Systems Tech.

no feedback with feedback

Figure 2 on p. 139 in: Piyabongkarn, D., Y. Sun, R. Rajamani, A. Sezen, and B. J. Nelson. "Travel Range 
Extension of  a MEMS Electrostatic Microactuator." IEEE Transactions on Control Systems Technology 13, no. 1 
(January 2005): 138-145 . © 2005 IEEE.

Figure 6 on p. 140 in: Piyabongkarn, D., Y. Sun, R. Rajamani, A.
Sezen, and B. J. Nelson. "Travel Range Extension of a MEMS
Electrostatic Microactuator." IEEE Transactions on Control Systems
Technology 13, no. 1 (January 2005): 138-145. © 2005 IEEE.

Figure 11 on p. 144 in: Piyabongkarn, D., Y. Sun, R. Rajamani, A.
Sezen, and B. J. Nelson. "Travel Range Extension of a MEMS
Electrostatic Microactuator." IEEE Transactions on Control Systems
Technology 13, no. 1 (January 2005): 138-145. © 2005 IEEE.
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Stabilization of unstable systems

> However:
• All potentially unstable modes must be both observable and 

controllable
• Observable means that the sensor provides state information 

about the mode
• Controllable means that the control inputs can modify the 

mode
• If a mode has both attributes, it can be stabilized (at least in

theory) with feedback

> Adding sensors to a system improves observability of 
modes

> Adding actuators improves controllability

> This can be generalized from unstable to unwanted…
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Control for MEMS
> Electrostatic traps for cells

> The goal is to trap single cells at 
each site

> System is currently run open loop

> Could we do better if we ran closed-
loop?

> Need to sense: optical or electrical

> Need to actuate
• This is hard…
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Control for MEMS

> Many MEMS devices/systems are run open loop –
why?

> Open loop
• Does not need additional sensors or actuators

» These increase fab complexity, chip size, cost, etc.
• But is sensitive to perturbations

> Closed loop
• Requires extra complexity
• More stable performance

> If you don’t need closed-loop control, don’t use it
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Outline

> Motivation for using feedback

> The uses of (linear) feedback

> Feedback of Nonlinear Systems
• Quasi-static systems
• Oscillators
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1

Out1

f(u)

Plant

Error Control

Control ler

1

In1 Error Control

Feedback Path

Feedback in Nonlinear Systems
> Can no longer use nice algebraic forms
> However, the same idea still holds:

• The controller pre-distorts the control signal so as to compensate 
for nonlinearities in the plant
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Adapted from Figure 15.11 in Senturia, Stephen
D. Microsystem Design . Boston, MA: Kluwer
Academic Publishers, 2001, p. 412.
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Feedback in Nonlinear Systems
> Controller “linearizes” in nonlinear system
> This also occurs in op-amps
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Resonators, Oscillators and Limit Cycles

> Resonator:  a passive element that exhibits underdamped
oscillatory behavior

> Oscillator:  a resonator plus an active gain element that 
compensates the resonator losses and results in steady 
oscillatory behavior

> Limiting:  a required nonlinearity in either the resonator or gain 
element

> Limit Cycle:  stable closed path in state space
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Example:  Resonant RLC Circuit

> While a linear amplifier can theoretically produce an undamped
linear system, it cannot create an oscillator

( )Rivv
Ldt

di

i
Cdt

dv

LCS
L

L
C

−−=

=

1

1

( )0 0

1

1

C
L

CL
C

dv i
dt C

vdi v v v
dt L L

=

= − − = −

vs

vo

vC

C L
R+

-

iL+ -

vo

vC

C L
R

+
-

iL+ -

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. 
MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].



JV:  2.372J/6.777J Spring 2007, Lecture 17 - 34

Example:  Resonant RLC Circuit
> No stable limit cycle
> Vary gain A of op-amp circuit
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Adding a limiter creates an oscillator
> Add in arctangent 

limiter
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Marginal Oscillator
> Gradual limiting leads to 

nearly sinusoidal 
waveforms for weakly 
damped resonators
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Oscillator Parting Comments

> Do not confuse a resonator with an oscillator

> The oscillator is the combined result of a resonator 
with a suitably designed circuit

> The oscillator is intrinsically nonlinear

> The limit cycle obeys its own dynamics, which can be 
discovered by analyzing the perturbation of a limit 
cycle and the time required to recover

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. 
MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].



JV:  2.372J/6.777J Spring 2007, Lecture 17 - 38

Conclusions
> When properly designed, feedback can

• Reduce sensitivity to variations
• Decrease response time of system
• Control output with zero DC error
• Stabilize unstable systems

> But it may be too complicated or unnecessary for 
your MEMS part a systems issue

> All elements in the feedback path have poles, and 
these can cause instabilities

> Numerous methods exist to analyze control systems 
in frequency, time, root-locus, and state-space 
domains
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