
Homework Set #4 Solution 

Problem #12 

Classically:  
h p = 

h , K.E.  = 
p 2 

⇒ λ = .
λ 2m 0 2 K.E.  m 0 

Relativistically: 
2 hc pc = K.E.2 + 2 K.E. m c , λ = 

hc 
⇒ λ = .0 pc K.E.2 + 2 K.E. m c  2 

0 

In the equations, p is the momentum, K.E. is the kinetic energy, c is the speed of light, m 0 
is the rest mass of the electron. 

K.E. (keV) λclassical (nm) λrelativistic (nm) 
10 0.0123 0.0122 
100 0.00388 0.00370 
1000 0.0012 0.00087 

Relativistic corrections are important above 100 keV. 

Problem #13 

a.) Elastic collision 
Conservation of momentum  Conservation of Energy 

2 2 1 ( )2v m i f ( (( ) = M (u )− v m f ) 1 v m i ) = 1 M (u f ) + 2 v m f2 2 

Combining these equations: 

M − m 2m v f = vi u f = vi              For M>>m, v f ≈ viM + m M + m 



b.) 100 KeV electron: m=9.1e-31 kg;   resting gold nucleus: M=3.3e-25 kg 

Energy lost for the electron is that imparted on the gold nucleus 

( 2 4mM 4mMQ = 1 u M f ) = 1 M ⎜⎛ 2m vi 
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(M + m)2 [ v m i )
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Q
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lost = 1.1 eV 

Problem #14 

=a) At 100Kev, λ = 3.7e-3 nm.  Since p mλ sinα = 0.54 nm  , 
−α ≈ sin α = mλ p = 6(3.7 × 10− 3 nm) 0.54 nm , or α = ×  4 10 2 rad . 

− 2b) For imaging α � 10 − 10− 3 , so 4 10  2 rad is reasonable for obtaining diffraction × − 

patterns, which are less critical than imaging. 

c) sinα m pλ= ⇒ 0.01 = 6(400 nm  ) p ⇒ p = 2.4 × 105 nm  = 0.24 mm  
Pretty big! 

=d) p mλ / sin  α . Let sin α = 1,  then p = mλ . m = p λ = 2.4 × 105 nm 4× 102 nm = 600. 
Really high! 

m pλ − 1(e) sinα = ⇒ α = sin m pλ ) = sin− 1(0.285m) 
oFor m = 1; α = 17 . 
oFor m = 2; α = 35 . 
oFor m = 3; α = 59 .


For m = 4; α = cut off .

So, 3rd order is the highest. 


Problem #15 

p = 1 4  where C ≈ f .min C λ 3  4  
s s 

− 3a) @ E = 100 keV  , λ = 3.7 × 10 nm  . For C = 1mm  , p = 0.47 nm  s  min  

− 2b) @ E = 1keV  , λ = 3.88× 10 nm  . For C = 10 mm  , p = 4.9 nm  s  min  

c) To keep the focal length the same, the current in the magnetic lens must be adjusted 
such that the trajectories of electrons are identical for the two beam energies. To achieve 



this, the ratio of the axial velocity to the radial velocity v v  should be independent ofr z

the beam energy. Hence, v = Eh  z  ( )  and  v = Eh  z  ( ) .r r z z 

On the other hand, the B field is a linear function of the current I, or 
z (B = I g  ( ),  B = I g  (z) , where g z) and g (z) are functions of z. So, from the z z r r z r 

lecture notes we have 
dθr ∝ ∫ v B dt  = B dzz r  ∫ rdt 
v = ∫ a dt  r r 

∝ ∫ F dt  r 

( B dz B dt z∝ ∫ ∫  r ) 
Bz= ∫ ∫ B dz ) dzr( vz 

I 2 

∝ 
E 

Finally, 
2 2v I 1 Ir ∝ = 

vz E E E 

Therefore, if energy E is increased by a factor of 100, the current I must be increased by a 
factor of 10. 

Problem #16 

The oxide is a uniform shade because it is amorphous, and thus no coherent Bragg 
diffraction occurs. The polysilicon is polycrystalline.  If a grain is oriented properly, 
Bragg diffraction will enter the aperture and we will see a bright grain.  Otherwise, the 
diffracted beam will miss the aperture and the grain will appear dark.  Silicon is 
crystalline (single crystal) and scatters electrons coherently.  Because TEM samples are 
typically very thin, they bend easily.  In certain regions of the bend the Bragg condition is 
met such that the aperture is missed and the Si in those regions appears dark.  Oxide does 
not exhibit these bend contours because it is amorphous. 


