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Problem 1: This problem is about improving the accuracy of the photometric
stereo method for recovering surface shape. We might want to take more than
two brightness measurements in order to improve accuracy when using the pho-
tometric stereo method. Imagine that n light sources are used in turn to obtain
n images. Suppose that the surface under consideration is Lambertian and that
the direction to the i-th source is given by the unit vector ŝi . Assume that the
surface can have an albedo ρ (where 0 < ρ < 1) (i.e. it is not neccessarily an ideal
Lambertian surface). At each point in the image, we wish to find the unit surface
normal n̂ that minimizes the sum of squares of errors

n∑
i=1

(ρ n̂ · ŝi −Ei)
2 ,

where Ei is the i-th measurement of brightness at that point, and ρ the albedo.
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(a) Show that the vector that minimizes the sum of squares of errors is

ρ n̂ =
[

n∑
i=1

ŝi ŝ
T
i

]−1 n∑
i=1

Ei ŝi ,

where abT is the dyadic product of the vectors a and b, i.e.⎛
⎝ ax
ay
az

⎞
⎠( bx by bz

) =
⎛
⎝ axbx axby axbz
aybx ayby aybz
azbx azby azbz

⎞
⎠ ,

and [ ]−1 indicates the inverse of the matrix.

(b) Show that the matrix is singular when there is only one measurement
(n = 1). How about two measurements (n = 2)?

(c) What is the smallest number n of measurements needed to guarantee that
the indicated matrix inverse exists? Hint: This part of the problem is nontrivial.

(d) How would you expect the minimum number of measurements needed
change if it were known that the albedo was one (ρ = 1)?

Problem 2: This problem is about a family of surface reflectance models used to
describe light reflection off the surfaces of rocky planets, asteroids, and satellites.
A phenomenological reflectance model for such surfaces is an ideal ‘Minnaert’
surface for which

f (θi , φi ; θe, φe) = (c + 1)/(2π) (cos θi cos θe)c−1

for 0 ≤ c ≤ 1. Here, when illuminated by a distant point source, brightness is
given by

L = (c + 1)/(2π) E0 cosc−1 θe cosc θi

(a) Does the surface reflectance so defined obey Helmholtz reciprocity?

(b) For what value of c is the surface brightness independent of the viewing
direction?

(c) For what value of c is the surface brightness independent of the illumination
direction?

(d) Is Lambert’s formula a special case of Minnaert’s formula?

(f) Is a Hapke-type surface a special case of a Minnaert surface?

(f) Is a surface with radiance proportional to sec θe a special case also?

Problem 3: This problem is about ambiguity in recovering the shape of an object.
Suppose that the reflectance map is linear in p and q, so that

R(p, q) = ap + bq + c.
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(for example, it could be a Hapke-type surface). We have an image, including the
silhouette of a simple convex object of shape z = f (x, y). Show that the surface

z = f (x, y)+ g(bx − ay),

for an arbitrary differentiable function g(s), will give rise to the same image.
Does the surface z have the same silhouette? Assume that the derivative of g is
bounded.

Problem 4: This problem is about starting the solution of a shape-from-shading
problem at a singular point, by fitting a smooth local shape near the singular
point. Consider the image of a polynomial surface with a stationary point at the
origin:

z(x, y) = α(x2 + y2)+ 2βxy

Assume that the rotationally symmetric reflectance map is simply

R(p, q) = (1+ p2 + q2)

(a) What is the image E(x, y) of this surface? What is the brightness gradient
(Ex , Ey)?

(b) What is the relationship between the second order partial derivates Exx and
Eyy? What is the relationship between the second order partial derivatives
and the coefficients α and β of the polynomial?

(c) Given measurements of Exx , Exy , and Eyy at the origin, how many solu-
tions (values of α and β) are there for the surface shape?

(d) Suppose that an image of such a polynomial surface has a non-zero mixed
second order partial derivative Exy . Is it possible to rotate the coordinate
system so that in the mixed partial derivative is zero in the rotated system?

Hint: Express the second partial derivatives in the rotated coordinate system
in terms of the ones in the original coordinate system — then try and find a
rotation that makes the mixed derivative drop out.

Problem 5: This problem is about “line” detection — as opposed to “edge”
detection. The brightness gradient ∇E = (Ex , Ey) is useful in recovering image
motion. It is also useful for “edge” detection where we look for extrema of the
brightness gradient along the direction of the brightness gradient itself.

The first directional derivative of brightness along a line that makes an angle
θ with the x axis is

dE

ds
= Ex cos θ +Ey sin θ

The second derivatives of brightness are of use in recovering local surface curva-
ture, as well as for “line” detection.
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(a) Show that the maximum directional first derivative is in the direction given
by the unit gradient vector

(Ex , Ey)
/√

E2
x +E2

y

and that the slope in that direction is
√
E2

x +E2
y .

(b) Show that the second directional derivative along a line that makes an angle
θ with the x axis is:

d2E

ds2
= Exx cos2 θ + 2Exy sin θ cos θ +Eyy sin2 θ.

(c) Show that the second directional derivative has extrema for

tan 2θ = 2Exy

/
(Exx −Eyy)

(d) Show that the extreme values are

E′′
min,max = 1

2
(Exx +Eyy)± 1

2

√
(Exx −Eyy)2 + 4E2

xy .

e) Show that the four directions of extrema in second directional derivative are
given by:

±
(√

D ± (Exx −Eyy)

2D
, sign(Exy)

√
D ∓ (Exx −Eyy)

2D

)
.

wher
D =

√
(Exx −Eyy)2 + 4E2

xy .

(f) When will there not be extrema in the directional second derivative?

(g) What is the geometric relationship between the gradient direction ∇E =
(Ex , Ey) and the direction of the minimum second directional derivative on
‘top of a ridge’ of the brightness surface? What is the geometric relationship
between the gradient direction and the direction of the maximum second
directional derivative at the ‘bottom of a valley’ of the brightness surface?

Hints: Use identities for trigonometric functions of doubled angles. Express
sin 2θ and cos 2θ in terms of tan 2θ . Substitute back into the expression for
the directional second derivative. Express cos θ and sin θ in terms of cos 2θ and
sin 2θ . Note that the second directional derivative can be positive or negative.
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