
    

      
       

 

                        
           

          

6.801/6.866: Machine Vision, Lecture 8 

Professor Berthold Horn, Ryan Sander, Tadayuki Yoshitake 
MIT Department of Electrical Engineering and Computer Science 

Fall 2020 

These lecture summaries are designed to be a review of the lecture. Though I do my best to include all main topics from the 
lecture, the lectures will have more elaborated explanations than these notes. 

1 Lecture 8: Shape from Shading, Special Cases, Lunar Surface, Scanning 
Electron Microscope, Green’s Theorem in Photometric Stereo 

In this lecture, we will continue our discussion of photometry/radiometry, beginning with the concepts covered last lecture. We 
will then explore Hapke surfaces and how they compare to Lambertian surfaces, and show how they can be used to solve our 
shape from shading problem. Finally, we will introduce two new types of lenses and some of their applications: “thick” lenses 
and telecentric lenses. 

1.1 Review of Photometric and Radiometric Concepts 

Let us begin by reviewing a few key concepts from photometry and radiometry: 

• Photometry: Photometry is the science of measuring visible radiation, light, in units that are weighted according to the 
sensitivity of the human eye. It is a quantitative science based on a statistical model of the human visual perception of 
light (eye sensitivity curve) under carefully controlled conditions [3]. 

• Radiometry: Radiometry is the science of measuring radiation energy in any portion of the electromagnetic spectrum. 
In practice, the term is usually limited to the measurement of ultraviolet (UV), visible (VIS), and infrared (IR) radiation 
using optical instruments [3]. 

Δ δP • Irradiance: E = (W/m2). This corresponds to light falling on a surface. When imaging an object, irradiance isδA 
converted to a grey level. 

Δ δP • Intensity: I = (W/ster). This quantity applied to a point source and is often directionally-dependent. δW 

Δ P• Radiance: L = δ2 
(W/m2× ster). This photometric quantity is a measure of how bright a surface appears in an image.δAδΩ 

δL(θe,φe )• BRDF (Bidirectional Reflectance Distribution): f(θi, θe, φi, φe) = . This function captures the fact thatδE(θi,φi) 
oftentimes, we are only interested in light hitting the camera, as opposed to the total amount of light emitted from an 
object. Last time, we had the following equation to relate image irradiance with object/surface radiance: 

π � d �2 
4 α 

4 f 
E = L cos 

Where the irradiance of the image E is on the lefthand side and the radiance of the object/scene L is on the right. The 
BRDF must also satisfy Helmholtz reciprocity, otherwise we would be violating the 2nd Law of Thermodynamics. 
Mathematically, recall that Helmholtz reciprocity is given by: 

f(θi, θe, φi, φe) = f(θe, θi, φe, φi) ∀ θi, θe, φi, φe 

With this, we are now ready to discuss our first type of surfaces: ideal Lambertian surfaces. 
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1.2 Ideal Lambertian Surfaces 

Ideal Lambertian surfaces are of interest because their sensed brightness (irradiance) only depends on the cosine of the incident 
angles (θi, φi). A few additional notes about these surfaces: 

• Ideal Lambertian surfaces are equally bright from all directions, i.e. 

f(θi, θe, φi, φe) = f(θe, θi, φe, φi) ∀ θi, θe, φi, φe 

AND 

∂f(θi, θe, φi, φe) ∂f(θi, θe, φi, φe)
f(θi, θe, φi, φe) = K ∈ R with respect to θe, φe, i.e. = = 0 

∂θe ∂φe 

• If the surface is ideal, the Lambertian surface reflects all incident light. We can use this to compute f . Suppose we take 
a small slice of the light reflected by a Lambertian surface, i.e. a hemisphere for all positive z. The area of this surface is 
given by: sin θeδθeδφe, which is the determinant of the coordinate transformation from euclidean to spherical coordinates. 
Then, we have that: Z π Z 

2
π 

(fE cos θi sin θedθe)dφe = E cos θi (Integrate all reflected light) 
−π 0 Z π Z 

2 

π 
2

π 

E cos θi (f sin θedθe)dφe = E cos θi (Factor out E cos θi) 
−π 0Z π Z 

(f sin θedθe)dφe = 1 (Cancel out on both sides) 
−πZ 

0 

2 

2 

π 

π 

2π f sin θe cos θedθe = 1 (No dependence on φ) Z0 

πf 2 sin θe cos θedθe = 1 (Rearranging terms) 
0 Z 

2
π 

πf sin(2θe)dθe = 1 (Using identity 2 sin θ cos θ = sin(2θ)) 
0 

1 θe = 
πf [− cos(2θe)] 2

π 

= 1θe=02 
1 

πf = 1 =⇒ f = 
π 

1.2.1 Foreshortening Effects in Lambertian Surfaces 

Now let us discuss a key issue in radiation reflectance and machine vision - foreshortening. Foreshortening is the visual effect 
or optical illusion that causes an object or distance to appear shorter than it actually is because it is angled toward the viewer 
[1]. Let us show how this is relevant for computing f . 

Suppose we have a point source radiating isotropically over the positive hemisphere in a 3-dimensional spherical coordinate 
system. Then, the solid angle spanned by this hemisphere is: 

Asurface 2πr2 

Ω = = = 2π Steradians 
r2 r2 

1 1If the point source is radiating isotropically in all directions, then f = But we saw above that f = for an ideal Lambertian 2π . π 
surface. Why do we have this discrepancy? Even if brightness is the same/radiation emitted is the same in all directions, this 
does not mean that the power radiated in all directions is hte same. This is due to foreshortening, since the angle between 
the object’s surface normal and the camera/viewer changes. 

1.2.2 Example: Distant Lambertian Point Source 

1Here, we will have that L = Es (where s is the location of the light source). Since we have to take foreshortening into account, f 

the perceived area A of an object with world size A0 is given by: 

A = A0 cos θi 

Therefore, our expression for the the radiance (how bright the object appears in the image) is given by: 

1 1 
L = Es = E0 cos θi

π π 
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1.3 Hapke Surfaces 

Hapke surfaces are another type of surface we study in this course. Formally, a Hapke surface is an object which has re-
flectance properties corresponding to Hapke parameters, which in turn are a set of parameters for an empirical model that 
is commonly used to describe the directional reflectance properties of the airless regolith surfaces of bodies in the solar system [2]. 

The BRDF of a Hapke surface is given by: 

1 
f(θi, φi, θe, φe) = √ 

cos θe cos θi 

We can see that the Hapke BRDF also satisfies Helmholtz Reciprocity: 

1 1 
f(θi, φi, θe, φe) = √ = √ = f(θe, φe, θi, φi) 

cos θe cos θi cos θi cos θe 

Using the Hapke BRDF, we can use this to compute illumination (same as radiance, which is given by: 

L = E0 cos θif(θi, φi, θe, φe) 

1 
= E0 cos θi √ 

cos θe cos θir 
cos θi 

= E0 
cos θe 

Where L is the radiance/illumination of the object in the image, E0 cos θi is the irradiance of the object, accounting for fore-
1shortening effects, and √ is the BRDF of our Hapke surface. 

cos θi cos θe 

1.3.1 Example Application: Imaging the Lunar Surface 

What do the isophotes of the moon look like, supposing the moon can fall under some of the different types of surfaces we have 
discussed? 

• Lambertian: We will see circles and ellipses of isophotes, depending on the angle made between the viewer and the the 
moon. 

• Hapke: Because of the BRDF behavior, isophotes will run longitudinally along the moon in the case in which it is a 
Hapke surface. Recall isophotes are where the brightness of the object in the image, given by: v r u n̂·ŝucos θi t ||n̂||2||ŝ||2 n̂ · ̂s 

= = c =⇒ = c 2 for some c ∈ R 
n̂·v̂cos θe n̂ · v̂ ||n̂||2||v̂||2 

Where n̂ is the surface normal vector of the object being imaged, ŝ is the unit vector describing the position of the light 
source, and v̂ is the unit vector describing the position of the vertical. We can derive a relationship between n̂ and ŝ: 

n̂ · ̂s = cn̂ · v̂ =⇒ n̂ · (ŝ − cv̂) = 0 =⇒ n̂ ⊥ (ŝ − cv̂) 

Next, we will use spherical coordinates to show how the isophotes of this surface will be longitudinal: ⎡ ⎤ 
sin θ cos φ 

n̂ = ⎣sin θ sin φ⎦ ∈ R3 

cos θ 

Since normal vectors n̂ ∈ R3 only have two degrees of freedom (since ||n̂||2 = 1), we can fully parameterize these two degrees 
of freedom by the azimuth and colatitude/polar angles φ and θ, respectively. Then we can express our coordinate system 
given by the orthogonal basis vectors n̂, ̂s, v̂ as: � �T 

n̂ = sin θ cos φ sin θ sin φ cos θ � �T 
ŝ = cos θs sin θs 0 � �T 
v̂ = cos θv sin θv 0 
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We can use our orthogonal derivations from above to now show our longitudinal isophotes: r 
cos θi n̂ · ̂s sin θ cos φ cos φs + sin θ sin φ sin φs cos(φ − φs) 

= = = = c for some c ∈ R 
cos θe n̂ · v̂ sin θ cos φ cos φv + sin θ sin φ sin φv cos(φ − φv) 

From the righthand side above, we can deduce that isophotes for Hapke surfaces correspond to points with the same 
azimuth having the same brightness, i.e. the isophotes of the imaged object (such as the moon) are along lines of constant 
longitude. 

1.3.2 Surface Orientation and Reflectance Maps of Hapke Surfaces 

Next, we will take another look at our “shape from shading” problem, but this time using the surface normals of Hapke surfaces 
and relating this back to reflectance maps and our (p, q) space. From our previous derivations, we already have that the BRDF 
of a Hapke surface is nothing more than the square root of the dot product of the surface normal with the light source vector 
divided by the dot product of the surface normal with the vertical vector, i.e. r r 

cos θi n̂ · ̂s 
= 

cos θe n̂ · v̂ 

Next, if we rewrite our unit vectors as 3D vectors in (p, q) space, we have: � �T−p −q 1 
n̂ = p 

p2 + q2 + 1 � �T−ps −qs 1 
ŝ = p 

p2 + q2 + 1 s s� �T 
v̂ = 0 0 1 

Then, substituting these definitions, we have: 

1 
n̂ · v̂ = p

1 + p2 + q2 

1 + psp + qsq 
n̂ · ̂s = p p

1 + p2 + q2 1 + p2 + q2 
s s 

1+psp+qsq√ √ 
n̂ · ̂s 1+p2+q2 1+p2+q2 

s s = 
n̂ · v̂ √ 1 

21+p2+q

1 + psp + qsq 
= p

1 + p2 + q2 
s s 

1 + psP + qsq 
= 

Rs pΔ
(Where Rs = 1 + p2 + q2.) Note that ps and qs are constants, since they only reflect the spatial derivatives of the light source.s s 
This ratio of dot products is therefore linear in (p, q) space! Then, what do the isophotes look like in gradient space? Recall 
that isophotes take the form: r 

n̂ · ̂s n̂ · ̂s 1 + psP + qsq 
= c =⇒ = = c 2 for some c ∈ R . 

n̂ · v̂ n̂ · v̂ Rs 

Therefore, isophotes of Hapke surfaces are linear in spatial gradient space! This is very useful for building reflectance maps 
because, as we will see shortly, a simple change of coordinate system in (p, q) space tells us a lot about the surface orientation 
in one of the two directions. 

For one thing, let us use our linear isophotes in gradient space to solve our photometric stereo problem, in this case with 
two measurements under different lighting conditions. Photometric stereo is substantially easier with Hapke surfaces than with 
Lambertian, because there is no ambiguity in where the solutions lie. Unlike Lambertian surfaces, because of the linearity in 
(p, q) space we are guaranteed by Bezout’s Theorem to have only one unique solution. 
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01.3.3 Rotated (p , q0) Coordinate Systems for Brightness Measurements 

We can also derive/obtain a surface orientation in gradient space in a rotated coordinate system in gradient space, i.e. from 
0(p, q) −→ (p , q0). 

We can prove (see the synchronous lecture notes for this part of the course) that the transforming the points in (x, y) via 
a rotation matrix R is equivalent to rotating the gradient space (p, q) by the same matrix R. I.e. � � � � 0x x0R : (x, y) =⇒ (x , y 0), = R0y y� � � � 0 

0R : (p, q) =⇒ (p , q 0), 
p
q 

= R 
p
q0 

Where R is given according to: � � 
cos α sinα 

R = ∈ SO(2)
sin α cos α 

(Where SO(2) is the Special Orthogonal Group [4].) Note that R−1 = RT since R is orthogonal and symmetric. 

0 0 0By rotating our coordinate system from (p, q) −→ (p , q0), we are able to uniquely specify p , but not q , since our isophotes lie 
along a multitude/many q0 values. Note that this rotation system is specified by having p0 lying along the gradient of our isophotes. 

Returning to our Lunar Surface application with Hapke surfaces, we can use this surface orientation estimation framework 
to take an iterative, incremental approach to get a profile of the lunar surface. This enables us to do depth profile shaping 
of the moon simply from brightness estimates! There are a few caveats to be mindful of for this methodology, however: 

• We can only recover absolute depth values provided we are given initial conditions (this makes sense, since we are effectively 
solving a differential equation in estimating the depth z from the surface gradient (p, q)T ). Even without initial conditions, 
however, we can still recover the general shape of profiling, simply without the absolute depth. 

• Additionally, we can get profiles for each cross-section of the moon/object we are imaging, but it is important to recognize 
that these profiles are effectively independent of one another, i.e. we do not recover any information about the relative 
surface orientation changes between/at the interfaces of different profiles we image. We can use heuristic-based approaches 
to get a topographic mapping estimate. We can then combine these stitched profiles together into a 3D surface. 

1.4 “Thick” & Telecentric Lenses 

We will now shift gears somewhat to revisit lenses, namely “thick” and telecentric lenses. 

1.4.1 “Thick” Lenses 

In practice, lenses are not thick, and are typically cascaded together to mitigate the specific aberrations and wavelength depen-
dence of each individual lens. For thick lenses, we will leverage the following definitions: 

• Nodal/principal points: The center points of the outermost (ending and beginning lenses). 

• Principal planes: The distance from the object to the first imaging lens and the distance from the last imaging lens to 
the viewer or imaging plane. Abbreviated by b. 

• Focal length: This definition is the same as before, but in this case, the focal length is the distance from the first imaging 
lens to the last imaging lens along the optical axis (i.e. orthogonal to the radial unit vectors of each lens in the “thick” 
lens). 

From this, we have the formula: 

1 1 1 
+ = 

a b f 

One “trick” we can do with this is achieve a long focal length f and a small field of view (FOV), i.e. as is done in a telephoto 
lens. 
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1.4.2 Telecentric Lenses 

These types of lenses are frequently used in machine vision, such as for circuit board inspection or barcode reading. 

Motivation for these types of lenses: When we have perspective projection, the degree of magnification depends on dis-
tance. How can we remove this unwanted distance-dependent magnification due to perspective projection? We can do so by 
effectively “moving” the Center of Projection (COP) to “−∞”. This requires using a lens with a lot of glass. 

A few notes about this: 

• To image with magnifying effects, the lens must be at least as wide in diameter as the width of the object.

• a A double telecentric lens can be created by moving the other “modal point” (the imaging plane/viewer) to “+∞”. In
this case, our magnifying term given by cos4 α goes to zero, because:

lim α = 0 
COP→+∞ 

• We can generalize this idea even more with “lenselets”: These each concentrate light into a confined area, and can be used
in an array fashion as we would with arrays of photodiodes. A useful term for these types of arrays is fill factor: The
fill factor of an image sensor array is the ratio of a pixel’s light sensitive area to its total area [5]. Lenselet arrays can be
useful because it helps us to avoid aliasing effects. We need to make sure that if we are sampling an object discretely,
that we do not have extremely high-frequency signals without some low pass filtering. This sort of low-pass filtering can be
achieved with using large pixels and averaging (a crude form of lowpass filtering). However, this averaging scheme does not
work well when light comes in at off-90 degree angles. We want light to come into the sensors at near-90 degrees (DSLRs
find a way to get a around this).

• Recall that for an object space telecentric device, we no longer have a distance-based dependence. Effectively, we are taking
perspective projection and making the focal length larger, resulting in approximately orthographic projection.
Recall that for orthographic projection, projection becomes nearly independent in position, i.e. (x, y) in image space has
a linear relationship with (X, Y ) in the world. This means that we can measure sizes of objects independently of how far
away they are!

Starting with perspective projection:

x X y Y 
= , = 

f Z f Z 

f f 
Having |ΔZ| << |Z|, whereΔZ is the variation in Z of an object =⇒ x = X, y = Y 

Z0 Z0
f 

Approximating = 1 =⇒ x = X, y = Y 
Z0

1.5 References 

PDF/Understanding%20Radiance%20(Brigh 

1. Foreshortening, https://en.wikipedia.org/wiki/Perspective (graphical)

2. Hapke Parameters, https://en.wikipedia.org/wiki/Hapke parameters

3. Understanding Radiance (Brightness), Irradiance and Radiant Flux

4. Orthogonal Group, https://en.wikipedia.org/wiki/Orthogonal group

5. https://en.wikipedia.org/wiki/Fill factor (image sensor)
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