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Problem 1: Here we consider some properties of a two-dimensional version of
the absolute orientation problem (that is, we are dealing with alignment of images
rather than volumes). Let (xi , yi) and (x′

i , y
′
i) be coordinates of corresponding

points in two images. For convenience, assume that the coordinates are measured
relative to the centroids of the points in the two images (i.e. the sum of the
coordinates in each image is zero). We are to minimize the sum of squares of
errors in the transform:

1√
s
x′
i =

√
s(+ cos θxi + sin θyi)

1√
s
y′
i =

√
s(− sin θxi + cos θyi)

by suitable choice of the ‘symmetrical’ scale factor s and the rotation θ . (Note
that translation has already been taken care of by using coordinates referenced
to the centroids).

(a) Show that when formulated this way, the total error to be minimized consists
of a term that depends only on s, and not on θ , and a term that depends
only on θ , and not on s — thus separting the problem of finding the rotation
from that of finding the scaling.

(b) Show that the best fit value for s can be computed without knowing the
rotation θ — and without knowing the correspondences between points in
the two coordinate systems!

(c) Show that the best fit value for θ can be found without knowing s.

(d) The resulting equation for θ appears to have more than one solution. Do
all of the solutions minimize the sum of squares of errors in image position?

(e) What was the advantage of ’splitting’ the contribution of scale s into two
factors,

√
s and 1/

√
s (rather than just using say x′

i = s . . . and y′
i = s . . .)?

Problem 2: This problem is about relating different ways of representing rotation
in 3-D. Rodrigues’ formula provides a method for rotating a vector r about an
axis ω̂ through an angle θ (see figure on next page):

r ′ = (cos θ)r + (1− cos θ)(r · ω̂)ω̂ + (sin θ)(ω̂ × r)

(a) Can a rotation through an angle−θ about a different axis producce the same
result? What is that axis?
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(b) Use Rodrigues’ rotation formula to show that the rotation matrix R for a
rotation about an axis specified by the unit vector ω̂ through an angle θ can
be written

R = cos θ I + (1− cos θ) ω̂ω̂
T + sin θ ω̂×

where ω̂× is a 3× 3 skew symmetric matrix such that ω̂×v = ω̂× v for all v .

(c) Express Trace(R) in terms of cos θ and sin θ , where Trace(R) is the sum of
the diagonal elements of the matrix R.

(d) How could you recover θ and ω̂ from R (hint: consider using Trace(R), and
the elements of R+RT and R−RT to recover cos θ , sin θ , and ω̂×).

(e) Show that ω̂
2
× = ω̂ω̂

T − I (where ω̂ω̂
T is the dyadic product of ω̂ and ω̂).

(f) Show that the matrix R defined in (b) is in fact orthonormal (RTR = I ).

(g) Based on (b), conclude that we can write the rotation matrix in terms of the
corresponding unit quaternion q̊ = (q,q)T as

R = (q2 − q · q)I + 2qqT + 2qq×
where q× is the skew symmetric matrix such that q×v = q × v for all v.

(h) Express Trace(R) in terms of q and q (may or may not need to remember
that q2 + q · q = 1).

(i) How would you recover q and q from R (hint: consider using Trace(R), and
the elements of R+RT and R−RT in analogy with part (d) above).
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Problem 3: Problems in photogrammetry require recovery of Euclidean motions,
that is, translation and rotation. In this problem we prove some quaternion
identities that are helpful in using quaternions to represent rotations in three
dimensions. Remember that the product of two quaternions å = (a, a) and
b̊ = (a, b) can be written

(a, a)(b, b) = (ab − a · b, ab + ba + a × b)

The conjugate of a quaternion å = (a, a) is å∗ = (a,−a). The dot-product of
two quaternions å and b̊ can be written (a, a) · (b, b) = ab + a · b.

(a) Show that
åå∗ = å∗å = (å · å)e̊

where e̊ is a quaternion with unit scalar part and zero vector part.
(b) Show that

(åb̊) · (åb̊) = (å · å)(b̊ · b̊)

(c) Show that
(åb̊) · (åc̊) = (å · å)(b̊ · c̊)

(d) Show that

(åq̊) · b̊ = å · (b̊q̊∗) and å · (q̊b̊) = (q̊∗å) · b̊

(e) Is the following always true?

(q̊åq̊∗) · (q̊b̊q̊∗) = å · b̊

Is a constraint on q̊ needed?
(f) How about?

(q̊åq̊∗) · ((q̊b̊q̊∗)(q̊c̊q̊∗)
) = å · (b̊c̊)

If necessary, assume that å, b̊, and c̊, are quaternions representing vectors, that
is, with zero scalar part — and, if necessary, that q̊ is a unit quaternion.

Problem 4: Here we explore an alternate way of determining rigid body motion
from two sets of 3-D measurements. Suppose that we have measured the coordi-
nates of n known features on an object before movement, and found them to be
{�i} for i = 1, 2 . . . n, and then measured them again after movement, and found
them to be {ri} for i = 1, 2 . . . n. One way of estimating the rigid body motion
that took place is to find the transformation that: (i) moves the average �̄ of {�i}
to the average r̄ of {ri}, and (ii) rotates the “axes of inertia” of the two sets of
measurements into exact alignment.

Let �′i = �i − �̄ and r ′i = ri − r̄ be coordinates relative to the centroids.

(a) Now consider the inertia of the “point cloud” {r ′i} about an axis defined
by the unit vector ω̂ (through the average r̄). Show that the square of the
perpendicular distance of the point r ′i from the axis of rotation is

r ′i · r ′i − (ω̂ · r ′i)2
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(b) Show that overall the inertia about the axis ω̂ can be expressed in the form

I(ω̂) =
n∑

i=1

r ′i
T

r ′i − ω̂
T

(
n∑

i=1

r ′ir ′i
T

)
ω̂

Is the 3× 3 matrix that appears in the above expression symmetric?

(c) The first term in the above sum is a constant, equal to the sum of squares of
distances of the points from the origin, and does not depend on the choice
of the axis ω̂. Show that the stationary values (maxima, minima and saddle
points) of the inertia are given by the eigenvalues of the 3×3 “inertia matrix”
in the above expression.

Correspondingly, the axis directions that give rise to these stationary values are
the eigenvectors of this matrix. The three eigenvectors will be orthogonal to each
other if the eigenvalues are distinct. Suppose the eigenvectors are e1, e2, and e3

corresponding to eigenvalues λ1, λ2, and λ3 where λ1 > λ2 > λ3 > 0.

(d) As an example, suppose that n = 6 and that the measured points are

(a, 0, 0)T , (−a, 0, 0)T , (0, b, 0)T , (0,−b, 0)T , (0, 0, c)T , (0, 0,−c)T

where a > b > c > 0. Determine the inertia matrix, and find its eigenvalues
and eigenvectors.

(e) Show that in general any vector r can be expressed as a linear combination
r ′ = a1e1 + a2e2 + a3e3 or, in other words,

r ′ = (
e1e2e3

)
a = Mra

where a = (a1, a2, a3)
T , and e1, e2, e3 are the three eigenvectors of part (c).

(f) The same analysis can be applied to the other measurements {�i} to obtain
the eigenvectors e′

1, e′
2, and e′

3 of a 3×3 “inertia matrix.” So we can express
any vector � as a linear combination �′ = b1e′

1 + b2e′
2 + b3e′

3 or

�′ = (
e′
1e′

2e′
3

)
b = Mlb

where b = (b1, b2, b3)
T . Express the orthonormal rotation matrix R in the

relation r ′ = R(�′) in terms of the two matrices Mr and Ml . Is the result
orthonormal?

(g) Do correspondences between points need to be known when using this
method? Can this method accomodate an arbitrary number of measured
points? When will this method of estimating absolute orientation fail?

(h) What is the smallest number of points that needs to be measured? (Keep in
mind that the centroid is first subtracted out . . .)
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Problem 5: Here we consider a machine vision method for determining the
attitude of a spacecraft. Suppose we wish to use a camera in a spacecraft to
determine the attitude from an image of a star field. We assume, first of all, that
star images have been matched with stars in a catalog (see e.g. Lisp by Winston
and Horn). Since the stars are essentially infinitely far away, the images we obtain
are not affected by the position of the craft, only its attitude.

(a) Let us first solve an equivalent problem in two dimensions. We are given
catalog directions (lxi , lyi) matched with observed directions (rxi , ryi) and
have to find the angle of rotation θ that will carry the later into best alignment
with the former. Explain why maximizing

n−1∑
i=0

(lxi , lyi) · Rot
(
(rxi , ryi)

)
is a reasonable strategy. Show that this is equivalent to maximizing

c

n−1∑
i=0

(
lxirxi + lyiryi

)+ s

n−1∑
i=0

(
lxiryi − lyirxi

)
subject to c2 + s2 = 1. Find the solution for c and s.

(b) Now let us solve the three-dimensional version of the problem. In analogy
with the two-dimensional case, we wish to maximize

n−1∑
i=0

�i · Rot(ri) =
n−1∑
i=0

�̊i · q̊ r̊i q̊∗

subject to q̊ · q̊ = 1, where �̊i = (0, �i) and r̊i = (0, ri). Show that this is the
same as maximizing

n−1∑
i=0

q̊r̊i · �̊i q̊

subject to q̊ · q̊ = 1.

(c) Use the fact that
�̊ q̊ = � q̊ and q̊ r̊ = � q̊

for some orthogonal 4 × 4 matrices � and � to reduce this to an eigenvec-
tor/eigenvalue problem.
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