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Problem 1: Quick way of estimating (the first coefficient of) radial distortion. A 
simple model of radial distortion is provided by the equation 

�r = r(1+ k2r
2 + . . .)  

where r is the undistorted distance of a point in the image from the center, while 
r � is the distorted distance. We will ignore higher order coefficients and estimate 
the first coefficient k2 of radial distortion from an image of a square lying in a 
plane perpendicular to the optical axis. Note that negative k2 leads to “drum 
barrel” distortion, while positive k leads to “pin cushion” distortion (Wide angle 
lenses typically exhibit “drum barrel” distortion). 

Suppose that the image of the square is centered in the image plane and 
that in the absence of distortion, the image of a corner of the square would be 
a distance rc from the center, while the middle of one of the sides of the image 
of the square would be a distance rm from the center. Next, assume that in the 
presence of radial distortion these distances are r � and r � respectively. Notec m 

that we directly observe only r � and r � — we cannot directly measure rc or rm.c m 
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√ 
Clearly rc = 2rm (and this is also what we would observe in the absence of 
radial distortion). √ 
(a) The difference r � − 2r � is a quantity that varies with distortion and canc m 

be used to estimate k2. Show that√ √�r − 2r � = 2k2r
3 

c m m 

(b) We could use this formula to estimate k2 if only we knew rm. Show that 
1 �rm = 2r � − √ rm c
2 

How then can you determine the coefficient of radial distortion k2? 

(c) Suppose measurements yield r � = 90 and r � = 113.137. Calculate them c 

difference in part (a) above. Then estimate k2, as well as rm and rc . 

Problem 2: Here we add scale to absolute orientation (but only in 2D, for sim-
plicity). Consider a flying robotic system that uses binocular stereo to obtain 
three-dimensional information from pairs of images. Suppose that the scale of 
the recovered three-dimensional coordinates is not known accurately because the 
baseline between exposure stations is not known with precision. Now suppose 
that two such three-dimensional models — obtained along different flight paths 
— are to be related. In this case, determining the absolute orientation requires 
that, in addition to translation and rotation, a scale factor relating the two three-
dimensional models be found as well. 

Here we explore — in a two-dimensional version of the problem — the 
implications of chosing different ways of introducing a scale factor into the error 
expression to be minimized. Consider ‘left’ coordinates li : 

(a, 0), (0, b), (−a, 0), (0, −b) 

and the corresponding ‘right’ coordinates ri : 

(c, 0), (0, d), (−c, 0), (0, −d)  

of four points (where l1 = (a, 0) corresponds to r1 = (c, 0) etc.). Hint: It may 
help to draw two diagrams showing the two sets of measurements. 

(a) What is the best fit translation from ‘left’ to ‘right’ coordinate system? (Hint: 
this can be determined without any detailed calculation) 

(b) What is the best fit rotation from ‘left’ to ‘right’ coordinate system? (Hint: 
this can be determined without any detailed calculation) 

(c) Suppose that we express the coordinate transformation in the form 

ri = s1R(li ) + t 

where R(. . .)  is the rotation, t is the translation and s1 is a scale factor. 
Show that minimizing the sum of squares of the magnitudes of the errors 
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� � 
ri − s1R(li ) + t leads to 

ac + bd 
s1 = 

a2 + b2 

(Hint: use the known rotation and translation to simplify the expression). 

(d) Suppose that we express the coordinate transformation instead in the form 

li = s2R(ri ) + t 

where s2 is a scale factor. Show that minimizing the sum of squares of the � � 
magnitudes of the errors li − s2R(ri ) + t leads to 

ca + db 
s2 = 

c2 + d2 

(Hint: use the rotation and translation determined above to simplify the 
expression). When is s2 = 1/s1? What is the sum of squares of errors then? 

(e) The two results above illustrate asymmetries between the way the ‘left’ and 
‘right’ coordinates are treated, and the way they appear in the resulting 
expression for the scale factor. Now consider instead 

1 √ √ ri = s3R(li ) + t 
s3 √ �√ � 

Find s3 that minimizes the sum of (1/ s3)ri − s3R(li ) + t 2 . Show 
that s3 is the square root of s1/s2. Do correspondences between coordinates 
measured in the two coordinate systems need to be known in order to recover 
the scale factor s3? 

Problem 3: When comparing an object against a library of objects, or when 
determining the attitude of an object in space, it is useful to have an even sampling 
of the space of rotations. The rotation groups of the Platonic solids provide 
convenient uniform sampling of the space of rotations. 

Consider the rotations of a tetrahedron that brings faces, edges and vertices 
into alignment. We’d like to express these in terms of unit quaternions. It helps 
to line up the tetrahedron with the coordinate axes in a symmetric way: 

(a) Suppose the four vertices are at (a, 0, b), (a, 0, −b), (−a, b, 0), and (−a, −b, 0). 
For what values of a and b are these four vectors from the centroid of the 
tetrahedron (i) unit vectors, and (ii) at equal angles from one another? 

(b) Some of the rotations of interest are those about lines from the centroid to 
the vertices (i.e. the four vectors in part(a)). These rotations are through 
angles of ±2π/3. Give the components of two quaternions that correspond 
to rotation through 2π/3 about two different vectors. 

(c) Now take the products of these two quaternions — in both possible orders 
— to generate two more rotations (remember that multiplication here does 
not commute). 
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(d) Finally, take the transitive closure. That is keep on multiplying the rotations 
you have generated pairwise with one another until no new rotations are 
generated. How many different rotations are there all together? How many 
of these are through angles of ±2π/3? Are there any rotations through 
angles other than 0 and ±2π/3 (Hint: you can reduce the amount of work 
by remembering that −q̊ represents the same rotation as q̊). 

Problem 4: Relative Orientation. Imagine that we didn’t know about the virtues 
of representing rotations using quaternions and we wished to solve the relative 
orientation problem using orthonormal matrix notation instead. 

(a) Show that the coplanarity condition [r b l�] = 0 (where l� is the ‘left’ vector 
rotated into the ‘right’ coordinate system) can be written 

r T El = 0 

where E = BR is the so-called “essential matrix,” with R a 3×3 orthonormal 
rotation matrix, and B the skew symmetric matrix corresponding to taking 
the cross-product with the baseline. (That is, Bv = b × v for any v .) Show 
that det(E) = 0 (Hint: find a non-zero vector v such that Ev = 0). 

Next, let’s assume that the matrix E has already been estimated from correspon-
dences between the left and right images and focus on recovering the baseline 
and the rotation from the “essential matrix.” In essence, we have to split E into 
the product of a skew-symmetric matrix (B) and an orthonormal matrix (R). 

(b) Show that each column of the “essential matrix” is orthogonal to the base-
line. How can you easily obtain the direction of the baseline from any two 
columns of the matrix? 

(c) Is the length of the baseline fixed by the “essential matrix”? Show that, if a 
set of corresponding ray directions satisfies the “essential matrix” constraint 
rT El = 0, then they also satisfy rT E�l = 0 where E� = kE. 

(d) It is often convenient to separate the recovery of translation from that of 
rotation. Show that EET = −B2 (and hence independent of rotation). Then 
show that B2 = bbT − (b · b)I, and that Trace(B2) = −2(b.b). Conclude 
that 

bbT = (1/2)Trace(EET )I − EET 

where Trace(EET ) is just the sum of squares of the elements of E. This 
provides another way to recover the baseline. How can one get b from bbT ? 
Are the magnitude and sign of b uniquely determined? 

Problem 5: When we view the corner of a rectangular building, we obtain three 
edges in the image from which we can deternmine the viewing direction in the 
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coordinate system defined by the three sets of parallel edges in the building. To 
simplify matters, we’ll consider orthographic projection (or equivalently, that the 
camera is aimed so that the image of the corner falls in the center of the image). 

So, consider an orthographic projection of the corner of a rectangular build-
ing. The task is to recover the orientation of the rectangular “brick” with respect 
to the image plane from the angles measured in the image between the lines meet-
ing at the vertex (for convenience, place the origin at the vertex). Let the ends 
(arbitrarily defined) of the three lines be given by the vectors a, b, and c — which 
of course all lie in the image plane. (The z component of these three vectors is zero 
since the z-axis is taken to be the direction of projection and hence perpendicular 
to the image plane.) 

The image line a corresponds to an edge of the brick parallel to a� = a + a ẑ, 
for some unknown a (since in orthographic projection a is obtained from a� by 
dropping the z component). Similarly the image line b corresponds to an edge 
parallel to b� = b + b ẑ, while the image line c corresponds to an edge parallel to 
�c = c + c ẑ. 

(a) Find the unknown scalars a, b, and c. Hint: Use the fact that the edges of 
� �the brick are supposed to be orthogonal, and hence so are a , b� , and c . 

(b) Let α be the angle that the vector a� makes with the image plane (and hence 
with a). Similarly, let β be the angle between b� and the image plane and γ 
be the angle between c� and the image plane. Show that � 

cos B cos C 
tan α = − 

cos A 
where A is the angle in the image plane between the lines b and c, B is the 
angle between the lines c and a, while C is the angle between c and a. Give 
similar expressions for tan β and tan γ . 

(c) What constraints — if any — on the angles A, B, and C are imposed by the 
fact that the terms under the square-root sign must be non-negative? 
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