
Computer Science and Artificial Intelligence Laboratory

MIT
Armando Solar-Lezama

Nov 25, 2015

November 25, 2015

Review of Temporal Logic and
Buchi Automata

1

Relationship to Kripke structure

o A Kripke structure represents a set of paths

- We want to establish the validity of a formula f under a Kripke

structure M and a start state s

o problem:

- formula is defined for a path, Kripke structure has many paths

s1

s4 s2

s2 s1 s3

s1 s3 s4 s2 s3 s2

s4 s2 s3 s2 s2 s1 s3

…
2

CTL* Logic

o Add two extra path quantifiers

- A f := for all paths, f

- E f := for some path, f

o Two important subsets:

- LTL : all formulas of the form A f

• Ex: A(FG p)

- CTL: there must be a path quantifier before every linear operator

• Ex: AG (EF p)

- The two are different!

3

Example:

o What does the following formula mean

- A(F G p)

o How about

- A(F A G p)

o How about

- A(F E G p)

P

P

P

4

Review of Temporal Logic

o What about the following formula:

- AG EF p

P

5

Review of Temporal Logic

o What does the following formula mean

1) A(F G p)

o How about

2) A(F A G p)

o How about

3) A(F E G p)

P

P

P

P

P

P

1 2 3

1 2 3 1 2 3 6

History Lesson

o “Sometimes” and “Not Never” Revisited: On Branching

versus Linear Time Temporal Logic

- Allen Emerson and Joseph Y. Halpern JACM Vol 33, 1986

o Introduces CTL* as a way to unify branching time and

linear time logics

7

Review of Temporal Logic

o From any state, it is possible to return to the reset state

along some execution.

- AGEF reset

o A request should stay asserted until an acknowledge is

received. The acknowledge must eventually be received.

- G req req U ack

o And, Ack must be received three cycles after request

- G req (req U ack ^ XXX ack)

8

Review of Temporal Logic

o Engine starts and stops with button push

- If engine is off, it stays off until I push

• If I never push it stays off forever

- If engine is on, it stays on until I push

• If I never push it stays on forever

- If the engine is on, I should be able to stop it at

any moment

- If it is off, I should be able to turn it back on,

but not without identifying myself 𝐺 𝑜𝑓𝑓 ⇒ 𝑜𝑓𝑓 𝑈 𝑝𝑢𝑠ℎ

𝐺 (𝑜𝑓𝑓 ⇒ 𝑜𝑓𝑓 𝑈 𝑝𝑢𝑠ℎ ∨ 𝐺 𝑜𝑓𝑓)

𝐺 (𝑜𝑛 ⇒ 𝑜𝑛 𝑈 𝑝𝑢𝑠ℎ ∨ 𝐺 𝑜𝑛)

𝐴𝐺 (𝑜𝑛 ⇒ 𝐸𝐹 𝑜𝑓𝑓)

on, off, push, id

𝐴𝐺 (𝑜𝑓𝑓 ⇒ 𝐸𝐹 𝑜𝑛 ∧ 𝐴(𝑜𝑓𝑓𝑈𝑖𝑑 ∨ 𝐺𝑜𝑓𝑓))

𝐴 𝑜𝑓𝑓𝑈𝑖𝑑 ∨ 𝐺𝑜𝑓𝑓 ≡ ¬𝐸(¬𝑖𝑑𝑈 ¬𝑜𝑓𝑓 ∧ ¬ 𝑖𝑑)

© MotorTrend Magazine TEN: The Enthusiast Network.
All rights reserved. This content is excluded from our
Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

9

http://ocw.mit.edu/help/faq-fair-use/

Can the trains collide?

H

V

while(*){
 if(p=0){
 p:=1;
 }
 if(p=1){
 if(g=free){
 g:=id;
 p:=2;
 }
 }
 if(p=2){
 p:=3; g:=free
 }
 if(p=3){
 p:=0;
 }
}

ph={0,1,2,3}

pv={0,1,2,3}

g={h, v, free}

pch={0, 1, ..., 9}

pc=0
pc=1

pc=2
pc=3
pc=4
pc=5

pc=6
pc=7

pc=8
pc=9

pcv={0, 1, ..., 9}

0 1 2 3

0

1

3

¬𝐹 (𝑝ℎ = 2 ∧ 𝑝𝑣 = 2)

10

Can the trains collide?

H

V

while(*){
 if(p=0){
 p:=1;
 }
 if(p=1){
 if(g=free){
 g:=id;
 p:=2;
 }
 }
 if(p=2){
 p:=3; g:=free
 }
 if(p=3){
 p:=0;
 }
}

ph={0,1,2,3}

pv={0,1,2,3}

g={h, v, free}

pch={0, 1, ..., 9}

pc=0
pc=1

pc=2
pc=3
pc=4
pc=5

pc=6
pc=7

pc=8
pc=9

pcv={0, 1, ..., 9}

0 1 2 3

0

1

3

¬𝐹 (𝑝ℎ = 2 ∧ 𝑝𝑣 = 2)

(ph, pv, g, pch, pcv)

while(*){
 if(p=0){
 p:=1;
 }
 if(p=1){
 if(g=free){
 g:=id;
 p:=2;
 }
 }
 if(p=2){
 p:=3; g:=free
 }
 if(p=3){
 p:=0;
 }
}

H train V train
11

Liveness Vs. Safety

o Two terms you are likely to run into:

o Safety:

- Something bad will never happen: 𝐺 ¬𝑏𝑎𝑑

- If it fails to hold, it’s easy to produce a witness

o Liveness:

- Something good will eventually happen: 𝐹 𝑔𝑜𝑜𝑑

- What does a witness for this look like?

12

Automata for LTL properties

o LTL defines properties over a trace

o Given a trace, we want to know whether it satisfies the

property

o Problem:

- we need to build an automata to recognize infinite strings!

- 𝜔 − 𝑅𝑒𝑔𝑢𝑙𝑎𝑟 Languages

13

Buchi Automata

o Similar to a DFA

- but with a stronger notion of acceptance

o In DFA, you have an accept state

- when you reach accept state, you are done

- this means you only accept finite strings

o In Buchi automata you also have accepting states

- but you only accept strings that visit the accept state infinitely

often

14

Buchi Automata

o A Buchi Automaton is a 5-tuple Σ, 𝑆, 𝐼, 𝛿, 𝐹

- Σ is an alphabet

- S is a finite set of states

- 𝐼 ⊆ 𝑆 is a set of initial states

- 𝛿 ⊆ 𝑆 × Σ × 𝑆 is a transition relation

- 𝐹 ⊆ 𝑆 is a set of accepting states

o Non-deterministic Buchi Automata are not

equivalent to deterministic ones

15

Example

o G req F ack

ok

rec

ack 𝜮-rec

𝜮-ack

16

Example

o G F p

ok

!p p

p

!p

17

From LTL to automata

o Any LTL formula can be expressed as a buchi automata

- but the construction of the automata is complicated

• exponential on the size of the formula

- See Vardi and Wolper, Reasoning about infinite computations,

1983

18

Explicit State Model checking

o The basic Strategy

Temporal Logic Formula

Kripke structure

Buchi Automata

Product Automata
Model

checker

OK

Counterexample

trace

19

MIT OpenCourseWare
http://ocw.mit.edu

6.820 Fundamentals of Program Analysis
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

