Types for Imperative Programs

Armando Solar-Lezama
Computer Science and Artificial Intelligence Laboratory MIT

Derived from slides by George Necula

October 13, 2015

Big Step OS for λ calculus

- Configuration is simply a lambda expression
- there is no state
- Result is a different lambda expression
- Inductive definition: Base case

$$
\overline{x \rightarrow x}
$$

- Inductive definition: recursive cases

Big Step OS for Imperative Programs

- The same techniques apply to programs with state
- The big difference is that the configuration now includes state
- Example: IMP
$\mathrm{e}:=\mathrm{n}|\mathrm{x}| \mathrm{e}_{1}+\mathrm{e}_{2}\left|\mathrm{e}_{1}==\mathrm{e}_{2}\right|$ True | False
$\mathrm{c}:=\mathrm{x}:=\mathrm{e}\left|\mathrm{c}_{1} ; \mathrm{c}_{2}\right|$ if e then c_{1} else $\mathrm{c}_{2} \mid$ while e do $\mathrm{c} \mid$ skip
- Now we need two types of judgments
expressions result in values

$$
\langle e, \sigma\rangle \rightarrow n \quad\langle c, \sigma\rangle \rightarrow \sigma^{\prime}
$$

Big Step OS for Imperative Programs

- Rules for expressions are very similar to what we had before

$$
\frac{\left\langle e_{1}, \sigma\right\rangle \rightarrow n_{1} \quad\left\langle e_{2}, \sigma\right\rangle \rightarrow n_{2} \quad n=n_{1}+n_{2}}{\langle N, \sigma\rangle \rightarrow n}
$$

- We need a rule to read values from variables

$$
\overline{\langle x, \sigma\rangle \rightarrow \sigma(x)}
$$

Big Step OS for Imperative Programs

- Commands mutate the state

$$
\frac{\langle e, \sigma\rangle \rightarrow e^{\prime}}{\langle X:=e, \sigma\rangle \rightarrow \sigma\left[X \rightarrow e^{\prime}\right]}
$$

$$
\frac{\left\langle c_{1}, \sigma\right\rangle \rightarrow \sigma^{\prime \prime} \quad\left\langle c_{2}, \sigma^{\prime \prime}\right\rangle \rightarrow \sigma^{\prime}}{\left\langle c_{1} ; c_{2}, \sigma\right\rangle \rightarrow \sigma^{\prime}}
$$

$\frac{\left\langle e_{1}, \sigma\right\rangle \rightarrow \text { false }\left\langle c_{f}, \sigma\right\rangle \rightarrow \sigma^{\prime}}{\left\langle\text { if } e_{1} \text { then } c_{t} \text { else } c_{f}, \sigma\right\rangle \rightarrow \sigma^{\prime}}$
$\frac{\left\langle e_{1}, \sigma\right\rangle \rightarrow \text { true }\left\langle c_{t}, \sigma\right\rangle \rightarrow \sigma^{\prime}}{\left\langle\text { if } e_{1} \text { then } c_{t} \text { else } c_{f}, \sigma\right\rangle \rightarrow \sigma^{\prime}}$

- What about loops?

Big Step OS for Imperative Programs

- The definition for loops must be recursive

$$
\begin{gathered}
\frac{\left\langle e_{1}, \sigma\right\rangle \rightarrow \text { false }}{\left\langle\text { while } e_{1} \text { then } c, \sigma\right\rangle \rightarrow \sigma} \\
\frac{\left\langle e_{1}, \sigma\right\rangle \rightarrow \text { true }\left\langle c ; \text { while } e_{1} \text { then } c, \sigma\right\rangle \rightarrow \sigma^{\prime}}{\left\langle\text { while } e_{1} \text { then } c, \sigma\right\rangle \rightarrow \sigma^{\prime}} \\
\frac{\left\langle e_{1}, \sigma\right\rangle \rightarrow \text { true }\langle c, \sigma\rangle \rightarrow \sigma^{\prime \prime}\left\langle\text { while } e_{1} \text { then } c, \sigma^{\prime \prime}\right\rangle \rightarrow \sigma^{\prime}}{\left\langle\text { while } e_{1} \text { then } c, \sigma\right\rangle \rightarrow \sigma^{\prime}}
\end{gathered}
$$

Small Step Semantics

- Many design decisions
- How small is a step?
- How do we select the next step?
- These decisions need to be defined formally

Redex

- A redex is an expression that can be reduced in one atomic step.
- The first step in defining a small step semantics is to define the redexes.
- Ex.
- In IMP: $\mathrm{n}_{1}+\mathrm{n}_{2}|\mathrm{x}:=\mathrm{n}|$ skip; $\mathrm{c} \mid$ if true then c 1 else c2 | if false then c1 else c2 | while b do c
- In λ-calculus: (λ x. v) e2, (λ x. e1) e2

Local reduction rules

- One for each redex
- show how to advance one step of the execution
- $\langle x, \sigma[x=n]\rangle \rightarrow\langle n, \sigma\rangle$
- $\left\langle n_{1}+n_{2}, \sigma\right\rangle \rightarrow\langle n, \sigma\rangle$ where $n=n_{1}+n_{2}$
- $\langle x:=n, \sigma\rangle \rightarrow\langle$ skip, $\sigma[x \rightarrow n]\rangle$
- \langle skip; $c, \sigma\rangle \rightarrow\langle c, \sigma\rangle$
- $\left\langle\right.$ if true then c_{1} else $\left.c_{2}, \sigma\right\rangle \rightarrow\left\langle c_{1}, \sigma\right\rangle$
- \langle if false then c1 else $c 2, \sigma\rangle \rightarrow\langle c 2, \sigma\rangle$
- \langle while b do $c, \sigma\rangle \rightarrow\langle$ if b then (c; while b do c) else skip, $\sigma\rangle$

Global reduction rules

- A simple algorithm
- start with a program
- identify a redex
- reduce according to local reduction rules
- repeat until you can't reduce anymore
- We need rules to define the next redex

Contexts

- We use H to refer to a context.
- $\mathrm{H}[\mathrm{r}]$ is a program fragment consisting of redex r in context H
- Global reduction rules can be defined from local reduction rules as flows
- if $\langle\mathrm{r}, \sigma\rangle \rightarrow\left\langle\mathrm{e}, \sigma^{\prime}\right\rangle$ then $\langle\mathrm{H}[\mathrm{r}], \sigma\rangle \rightarrow\left\langle\mathrm{H}[\mathrm{e}], \sigma^{\prime}\right\rangle$
- How we define the set of contexts will determine the order in which local reductions are applied.

Example

Configuration	Context	Redex
$<x:=(x+1)+2,[x=2]>$	$x=(0+1)+2$	x
$<x:=(2+1)+2,[x=2]>$	$x=0+2$	$2+1$
$<x:=3+2,[x=2]>$	$x=0 ;$	$3+2$
$<x:=5,[x=2]>$	0	$x:=5$
<skip, $[x=5]>$		

The context is a program with a hole

Contexts

- Contexts are defined by a grammar
- $\mathrm{H}::=\mathrm{o}|\mathrm{n}+\mathrm{H}| \mathrm{H}+\mathrm{e} \mid \mathrm{x}:=\mathrm{H}$
| if H then c1 else c2 | H; c
- The grammar defines the evaluation order
- Note in $a+b, a$ is evaluated before b.
- We can define redexes and contexts to
- define the order of evaluation
- define short circuit behavior

Contexts

- How do we know if our contexts and redexes are well defined?
- Decomposition theorem:

If c is not "skip", then there exist unique H and r such that c is $\mathrm{H}[\mathrm{r}]$

- Exist guarantees progress
- Unique guarantees determinism

ML Style References

- Adding references

$$
\begin{aligned}
& \tau::=\ldots \mid \tau \text { ref } \\
& \mathrm{e}::=\ldots|\operatorname{ref} e| e_{1}:=e_{2}\left|e_{1} ; e_{2}\right|!e
\end{aligned}
$$

- Example:

$$
\begin{gathered}
(\lambda f: \text { int } \rightarrow(\text { int ref }) .!(f 5))(\lambda x: \text { int. ref } x) \\
(\lambda x: \text { int ref } . x:=7 ;!x) \text { ref } x
\end{gathered}
$$

- Equational reasoning is gone!

Modeling the Heap

- Heap is a map from addresses to values
- $h:=\emptyset \mid h, a \rightarrow$ val: τ
- A Program is an expression + a heap
- $p:=$ heap h in e
- Heap addresses act as bound variables in expression

Small Step Semantics with Heap

- New contexts (in addition to the ones before)
- H := ref H|H:=e | addrs:= H|!H
- No new local reduction rules
- New global reduction rules
- heap h in $H[$ ref $v: \tau] \rightarrow$ heap $h,(a \rightarrow v)$: $\operatorname{\tau in} H[a]$
- heap h in $H[!a] \rightarrow$ heap h in $H[v]$
- As long as $a \rightarrow v \in h$
- heap h in $H[a:=v] \rightarrow$ heap $h[a \rightarrow v]: \operatorname{tin} H[*]$

Additional typing rules for references

$$
\frac{\Gamma \vdash e: \tau}{\Gamma \vdash(r e f e: \tau): \tau r e f}
$$

$$
\frac{\Gamma \vdash e: \tau r e f}{\Gamma \vdash!e: \tau}
$$

$$
\frac{\Gamma \vdash e_{1}: \tau r e f \Gamma \vdash e_{2}: \tau}{\Gamma \vdash e_{1}:=e_{2}: \text { unit }}
$$

References and polymorphism

$$
\begin{aligned}
& \text { let } x: \forall t .(t \rightarrow t) r e f=\Lambda t . r e f(\lambda x: t . x) \\
& \text { in } x[\text { bool }]:=\lambda x: \text { bool.not } x ; \\
& (!x[\text { int }]) 5
\end{aligned}
$$

- This is a big problem
- Solution: Disallow side effects in let.

MIT OpenCourseWare
http://ocw.mit.edu
6.820 Fundamentals of Program Analysis

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

