Types for Imperative Programs

Armando Solar-Lezama Computer Science and Artificial Intelligence Laboratory MIT

Derived from slides by George Necula

October 13, 2015

Big Step OS for λ calculus

- Configuration is simply a lambda expression
 - there is no state
- Result is a different lambda expression
- Inductive definition: Base case $\overline{x \to x}$
- Inductive definition: recursive cases

$$\frac{e \to e'}{x. e \to \lambda x. e'} \xrightarrow{??} e_1 e_2 \to e_3$$

Big Step OS for Imperative Programs

- The same techniques apply to programs with state
 - The big difference is that the configuration now includes state
- Example: IMP

 $e:= n | x | e_1 + e_2 | e_1 == e_2 | True | False$

c:= x := e | c_1 ; c_2 | if e then c_1 else c_2 | while e do c | skip

• Now we need two types of judgments expressions result in values commands change the state

$$\langle e, \sigma \rangle \to n \qquad \langle c, \sigma \rangle \to \sigma'$$

Big Step OS for Imperative Programs

 Rules for expressions are very similar to what we had before

$$\frac{\langle e_1, \sigma \rangle \to n_1 \quad \langle e_2, \sigma \rangle \to n_2 \quad n = n_1 + n_2}{\langle e_1 + e_2, \sigma \rangle \to n}$$

• We need a rule to read values from variables

 $\langle x,\sigma\rangle\to\sigma(x)$

Big Step OS for Imperative Programs

Commands mutate the state

$$\frac{\langle e, \sigma \rangle \to e'}{\langle X := e, \sigma \rangle \to \sigma[X \to e']} \qquad \qquad \frac{\langle c_1, \sigma \rangle \to \sigma'' \quad \langle c_2, \sigma'' \rangle \to \sigma'}{\langle c_1; c_2, \sigma \rangle \to \sigma'}$$

$$\frac{\langle e_1, \sigma \rangle \to false}{\langle if \ e_1 then \ c_t \ else \ c_f, \sigma \rangle \to \sigma'}$$

$$\frac{\langle e_1, \sigma \rangle \to true \quad \langle c_t, \sigma \rangle \to \sigma'}{\langle if \ e_1 then \ c_t \ else \ c_f, \sigma \rangle \to \sigma'}$$

• What about loops?

Big Step OS for Imperative Programs

• The definition for loops must be recursive

 $\frac{\langle e_1, \sigma \rangle \to false}{\langle while \ e_1 then \ c \ , \sigma \rangle \to \sigma}$

 $\frac{\langle e_1, \sigma \rangle \to true \quad \langle c; while \ e_1 then \ c, \sigma \rangle \to \sigma'}{\langle while \ e_1 then \ c \ , \sigma \rangle \to \sigma'}$

 $\begin{array}{ll} \underline{\langle e_1, \sigma \rangle \to true} & \langle c, \sigma \rangle \to \sigma'' & \langle while \ e_1 then \ c, \sigma'' \rangle \to \sigma' \\ & \langle while \ e_1 then \ c & , \sigma \rangle \to \sigma' \end{array}$

Small Step Semantics

- Many design decisions
 - How small is a step?
 - How do we select the next step?
- These decisions need to be defined formally

Redex

- A redex is an expression that can be reduced in one atomic step.
- The first step in defining a small step semantics is to define the redexes.
- Ex.
 - In IMP: $n_1 + n_2 | x := n |$ skip; c | if true then c1 else c2 | if false then c1 else c2 | while b do c
 - In λ -calculus : (λ x. v) e2 , (λ x. e1) e2

Local reduction rules

- One for each redex
 - show how to advance one step of the execution

$$- \langle x, \sigma[x=n] \rangle \to \langle n, \sigma \rangle$$

- $\langle n_1 + n_2, \sigma \rangle \rightarrow \langle n, \sigma \rangle$ where $n = n_1 + n_2$
- $\langle x := n, \sigma \rangle \rightarrow \langle skip, \sigma[x \rightarrow n] \rangle$
- $\langle skip; \, c, \sigma \rangle \rightarrow \langle c, \sigma \rangle$
- $\langle if true then c_1 else c_2, \sigma \rangle \rightarrow \langle c_1, \sigma \rangle$
- $\langle if \ false \ then \ c1 \ else \ c2, \sigma \rangle \rightarrow \langle c2, \sigma \rangle$
- $\langle while \ b \ do \ c, \sigma \rangle \rightarrow \langle if \ b \ then \ (c; \ while \ b \ do \ c) \ else \ skip, \sigma \rangle$

Global reduction rules

- A simple algorithm
 - start with a program
 - identify a redex
 - reduce according to local reduction rules
 - repeat until you can't reduce anymore
- We need rules to define the next redex

Contexts

- We use H to refer to a context.
- H[r] is a program fragment consisting of redex r in context H
- Global reduction rules can be defined from local reduction rules as flows
- if $<\mathbf{r}, \sigma > \rightarrow <\mathbf{e}, \sigma' > \text{then } <\mathbf{H}[\mathbf{r}], \sigma > \rightarrow <\mathbf{H}[\mathbf{e}], \sigma' >$
 - How we define the set of contexts will determine the order in which local reductions are applied.

Example

Configuration	Context	Redex
<x +="" 1)="" 2,="" :="(x" [x="2]"></x>	x = (o + 1) + 2	X
<x +="" 1)="" 2,="" :="(2" [x="2]"></x>	x = 0 + 2	2 + 1
<x +="" 2,="" :="3" [x="2]"></x>	x = o;	3 + 2
<x :="5," [x="2]"></x>	0	x:=5
<skip, [x="5]"></skip,>		

The context is a program with a hole

Contexts

- Contexts are defined by a grammar
- H ::= o | n + H | H + e | x:= H | if H then c1 else c2 | H; c
- The grammar defines the evaluation order
 - Note in a + b, a is evaluated before b.
- We can define redexes and contexts to
 - define the order of evaluation
 - define short circuit behavior

Contexts

- How do we know if our contexts and redexes are well defined?
- Decomposition theorem:

If c is not "skip", then there exist unique H and r such that c is H[r]

- Exist guarantees progress
- Unique guarantees determinism

ML Style References

• Adding references

$$\tau ::= \dots \mid \tau ref$$

- $\mathbf{e} ::= \dots \mid ref \; e \mid e_1 \coloneqq e_2 \mid e_1; e_2 \mid ! \; e$
- Example:

 $(\lambda f: int \rightarrow (int ref). ! (f 5)) (\lambda x: int. ref x)$

 $(\lambda x: int ref. x \coloneqq 7; !x) ref x$

• Equational reasoning is gone!

Modeling the Heap

- Heap is a map from addresses to values
 - $h ::= \emptyset \mid h, a \rightarrow val: \tau$

- A Program is an expression + a heap
 p ≔ heap h in e
 - Heap addresses act as bound variables in expression

Small Step Semantics with Heap

- New contexts (in addition to the ones before)
 H := ref H | H:=e | addrs:= H | !H
- No new local reduction rules
- New global reduction rules
 - heap h in $H[ref v: \tau] \rightarrow heap h, (a \rightarrow v): \tau in H[a]$
 - heap h in $H[!a] \rightarrow$ heap h in H[v]
 - As long as $a \rightarrow v \in h$
 - heap h in $H[a \coloneqq v] \rightarrow heap h[a \rightarrow v]: \tau in H[*]$

Additional typing rules for references

$$\frac{\Gamma \vdash e : \tau}{\Gamma \vdash (ref \; e: \tau): \tau \; ref}$$

 $\frac{\Gamma \vdash e : \tau \, ref}{\Gamma \vdash ! \, e : \tau}$

$$\frac{\Gamma \vdash e_1 : \tau \, ref\Gamma \vdash e_2 : \tau}{\Gamma \vdash e_1 \coloneqq e_2 : unit}$$

References and polymorphism

$$let x: \forall t. (t \rightarrow t)ref = \Lambda t. ref (\lambda x: t. x)$$

in x[bool]: = λx : bool. not x;
(! x[int]) 5

- This is a big problem
- Solution: Disallow side effects in let.

MIT OpenCourseWare http://ocw.mit.edu

6.820 Fundamentals of Program Analysis Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.