Axiomatic Semantics

Computer Science and Artificial Intelligence Laboratory MIT

October 21, 2015

Motivation

Consider the following program

```
...
if(x > y){
   t = x - y;
   while(t > 0){
        x = x - 1;
        y = y + 1;
        t = t - 1;
   }
}
```

I claim that for any values of x and y

- the loop will terminate
- when it does, if x > y, the values of x and y will be swapped How could I prove this?

Motivation

The tools we have seen so far are insufficient

- Operational semantics

- easy to argue that a given input will produce a given output
- also easy to argue that all constructs in the language will preserve some property (like when we proved type soundness)
- much harder to prove general properties of the behavior of a program on all inputs
- Type-based reasoning
 - types allow us to design custom checkers to verify specific properties
 - very good at reasoning about properties of the data pointed at by particular variables.

Axiomatic Semantics

A system for proving properties about programs

Key idea:

- we can define the semantics of a construct by describing its effect on assertions about the program state

Two components

- A language for stating assertions
 - can be First Order Logic (FOL) or a specialized logic such as separation logic.
 - many specialized languages developed over the years
 - Z, Larch, JML, Spec#
- Deductive rules for establishing the truth of such assertions

A little history

Early years: Unbridled optimism

- Heavily endorsed by the likes of Hoare and Dijkstra
- If you can prove programs correct, bugs will be a thing of the past
 - you won't even have to test your programs
- The middle ages
 - 1979 paper by DeMillo, Lipton and Perllis
 - proofs in math only work because there is a social process in place to get people to argue them and internalize them
 - program proofs are too boring for social process to form around them
 - programs change too fast and proofs are too brittle

The renaissance

- New generation of automated reasoning tools
- A handful of success stories
- Better appreciation of costs, benefits and limitations?

The basics

Hoare triple

- If the precondition holds before stmt and stmt terminates postcondition will hold afterwards
- This is a partial correctness assertion
 - we sometimes use the notation

[A] stmt [B]

to denote a total correctness assertion

• that means you also have to prove termination

What do assertions mean?

We first need to introduce a language

For today we will be using Winskel's IMP e:= $n | x | e_1 + e_2 | e_1 = e_2$ c:= $x := e | c_1 ; c_2 |$ if e then c_1 else c_2 | while e do c | skip

Big Step Semantics have two kinds of judgments expressions result in values commands change the state $\langle e, \sigma \rangle \rightarrow n$ $\langle c, \sigma \rangle \rightarrow \sigma'$

Semantics of IMP

Commands mutate the state

$$\frac{\langle e, \sigma \rangle \to e'}{\langle X := e, \sigma \rangle \to \sigma[X \to e']}$$

$$\frac{\langle c_1, \sigma \rangle \to \sigma'' \quad \langle c_2, \sigma'' \rangle \to \sigma'}{\langle c_1; c_2, \sigma \rangle \to \sigma'}$$

$$\frac{\langle e_1, \sigma \rangle \to false}{\langle if \ e_1 then \ c_t \ else \ c_f, \sigma \rangle \to \sigma'}$$

$$\frac{\langle e_1, \sigma \rangle \to true \quad \langle c_t, \sigma \rangle \to \sigma'}{\langle if \ e_1 then \ c_t \ else \ c_f, \sigma \rangle \to \sigma'}$$

What about loops?

Semantics of IMP

The definition for loops must be recursive

 $\frac{\langle e_1, \sigma \rangle \to false}{\langle while \ e_1 then \ c \ , \sigma \rangle \to \sigma}$

 $\frac{\langle e_1, \sigma \rangle \rightarrow true \quad \langle c; while \ e_1 then \ c, \sigma \rangle \rightarrow \sigma'}{\langle while \ e_1 then \ c \ , \sigma \rangle \rightarrow \sigma'}$

 $\begin{array}{ll} \underline{\langle e_1, \sigma \rangle \to true} & \langle c, \sigma \rangle \to \sigma'' & \langle while \ e_1 then \ c, \sigma'' \rangle \to \sigma' \\ & \langle while \ e_1 then \ c & , \sigma \rangle \to \sigma' \end{array}$

What do assertions mean?

The language of assertions
- A := true | false | e1 = e2 | e1 >= e2 | A1 and A2 | not A | ∀x . A

Notation $\sigma \models A$ means that the assertion holds on state σ

- This is defined inductively over the structure of A.
- Ex. $\sigma \models A$ and B if $f \sigma \models A$ and $\sigma \models B$

What do assertions mean

Complete list

- $\sigma \vDash true \ \sigma \vDash false$

$$-\frac{\langle e_{1},\sigma\rangle \rightarrow v \quad \langle e_{2},\sigma\rangle \rightarrow v}{\sigma \models e_{1} = e_{2}} \qquad \frac{\langle e_{1},\sigma\rangle \rightarrow v_{1} \quad \langle e_{2},\sigma\rangle \rightarrow v_{2} \quad v_{1} \leq v_{2}}{\sigma \models e_{1} \leq e_{2}}$$

$$-\frac{\langle e_{1},\sigma\rangle \rightarrow v_{1} \quad \langle e_{2},\sigma\rangle \rightarrow v_{2} \quad v_{1} \neq v_{2}}{\sigma \models e_{1} = e_{2}} \qquad \frac{\langle e_{1},\sigma\rangle \rightarrow v_{1} \quad \langle e_{2},\sigma\rangle \rightarrow v_{2} \quad v_{1} > v_{2}}{\sigma \models e_{1} \leq e_{2}}$$

$$-\frac{\sigma \models A \quad \sigma \models B}{\sigma \models A \text{ and } B} \qquad \frac{\forall v. \sigma [x \rightarrow v] \models A}{\sigma \models \forall x.A} \quad \frac{\sigma \models A \quad \sigma \models B}{\sigma \models A \text{ and } B} \quad \frac{\sigma \models B}{\sigma \models A \text{ and } B} \quad \frac{\exists v. \sigma [x \rightarrow v] \models A}{\sigma \models \forall x.A}$$

Partial correctness

Partial Correctness can then be defined in terms of OS $\{A\} \ c \ \{B\} \ iff$

$\forall \sigma \forall \sigma' (\sigma \vDash A \land \langle c, \sigma \rangle \to \sigma') \Rightarrow \sigma' \vDash B$

Defining axiomatic semantics

Establishing the truth of a Hoare triple in terms of the operational semantics is impractical

The real power of AS is the ability to establish the validity of a Hoare triple by using deduction rules

- $\vdash \{A\}c\{B\}$ means we can deduce the triple from a set of basic axioms

Derivation Rules

Derivation rules for each language construct

$$\frac{}{\vdash \{A[x \to e]\}x := e\{A\}} \qquad \frac{\vdash \{A \land b\}c_1\{B\}}{\vdash \{A\}if \ b \ then \ c_1else \ c_2\{B\}}$$

 $\begin{array}{l} \vdash \{A \land b\}c \{A\} \\ \vdash \{A\} while \ b \ do \ c \ \{A \land not \ b\} \end{array} \begin{array}{l} \vdash \{A\}c_1 \ \{C\} \\ \vdash \{A\}c_1; c_2 \ \{B\} \end{array} \end{array}$

Can be combined together with the <u>rule of consequence</u>

 $\frac{\vdash A' \Rightarrow A \vdash \{A\}c \{B\} \vdash B \Rightarrow B'}{\vdash \{A'\}c \{B'\}}$

Soundness and Completeness

What does it mean for our deduction rules to be sound?

- You will never be able to prove anything that is not true
- truth is defined in terms of our original definition of {A} c {B}

$$\forall \sigma \forall \sigma' (\sigma \vDash A \land \langle c, \sigma \rangle \to \sigma') \Rightarrow \sigma' \vDash B$$

- we can prove this, but it's tricky

What does it mean for them to be complete?

- If a statement is true, we should be able to prove it via deduction

So are they complete?

- yes and no
 - They are complete relative to the logic
 - but there are no complete and consistent logics for elementary ¹⁵ arithmetic (Gödel)

Completeness Argument

$$\forall \sigma \forall \sigma' (\sigma \vDash A \land \langle c, \sigma \rangle \rightarrow \sigma') \Rightarrow \sigma' \vDash B$$
$$\Rightarrow \\ \vdash \{A\}c \{B\}$$

Prove by induction on the structure of the derivation of $\langle c, \sigma \rangle \rightarrow \sigma'$

- Look at all the different ways of proving that $\langle c, \sigma \rangle \rightarrow \sigma'$
- Make sure that for each of those, I can prove $\vdash \{A\}c\{B\}$

Completeness: Base case

$$\frac{\langle e, \sigma \rangle \to e'}{\langle X := e, \sigma \rangle \to \sigma [X \to e']}$$

Need to prove: $(\sigma \vDash A \land \sigma[X \rightarrow e'] \vDash B) \Rightarrow \vdash \{A\}X \coloneqq e\{B\}$

I only have one rule to prove $\vdash \{A\}X \coloneqq e\{B\}$

$$- \{A[x \to e]\}x := e \{A\}$$

(well, that plus the rule of consequence).So I need to show that

- $(\sigma \vDash A \land \sigma[X \to e'] \vDash B) \Rightarrow (A \Rightarrow B[x \to e])$
- Equivalently $\forall \sigma. (\sigma \vDash A \land \sigma[X \rightarrow e'] \vDash B) \Rightarrow (\sigma \vDash B[x \rightarrow e])$ 17

Completeness: An inductive case

$$\frac{\langle c_1, \sigma \rangle \to \sigma'' \quad \langle c_2, \sigma'' \rangle \to \sigma'}{\langle c_1; c_2, \sigma \rangle \to \sigma'}$$

Need to prove: $(\sigma \vDash A \land \sigma' \vDash B) \Rightarrow \vdash \{A\}c_1; c_2\{B\}$

Assuming $(\sigma \vDash A \land \sigma'' \vDash C) \land \vdash \{A\}c_1\{C\}$ and $(\sigma'' \vDash C \land \sigma' \vDash B) \land \vdash \{C\}c_1\{B\}$

MIT OpenCourseWare http://ocw.mit.edu

6.820 Fundamentals of Program Analysis Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.