Abstract Interpretation and the Heap

Computer Science and Artificial Intelligence Laboratory MIT

Nov 16, 2015

Recap

An abstract domain is a lattice
*Some analysis relax this restriction.

- Elements in the lattice are called Abstract Values

Need to relate elements in the lattice with states in the program

- Abstraction Function: $\alpha: \mathcal{P}(\mathcal{V}) \rightarrow A b s$
- Maps a value in the program to the "best" abstract value
- Concretization Function: $\gamma: A b s \rightarrow \mathcal{P}(\mathcal{V})$
- Maps an abstract value to a set of values in the program

Modeling the Heap

Giant Array vs. Collection of Objects (C vs Java view)
Giant array view

- $s \in S: I d \rightarrow$ Int
- $h \in H: N a t \rightarrow$ Int
- $\llbracket C \rrbracket: S \times H \rightarrow S \times H \cup\{\perp\}$
- $\llbracket E \rrbracket: S \rightarrow$ Int
- $\llbracket x=[e \rrbracket \rrbracket s h=s\{x \rightarrow h(\llbracket e \rrbracket s)\} h$
- $\llbracket[e]=x \rrbracket s h=s h\{\llbracket e \rrbracket s \rightarrow \mathrm{~s}(\mathrm{x})\}$
- $\llbracket x=\operatorname{cons}\left(e_{0} \ldots e_{k}\right) \rrbracket s h=s\{x \rightarrow j\} h\left\{j \rightarrow \llbracket e_{0} \rrbracket s, \ldots, j+k \rightarrow \llbracket e_{k} \rrbracket s\right\}$ where $j=(\max \operatorname{dom} h)+1$

Modeling the Heap

Giant Array vs. Collection of Objects (C vs Java view)
Collection of Objects View

- $s \in S: I d \rightarrow A d d r$
- $h \in H: A d d r \times I d \rightarrow A d d r$
- $\llbracket C \rrbracket: S \times H \rightarrow S \times H \cup\{\perp\}$
- $\llbracket E \rrbracket: S \rightarrow A d d r$
- $\llbracket x=e . f \rrbracket s h=s\{x \rightarrow h(\llbracket e \rrbracket s, f)\} h$
- $\llbracket e . f=x \rrbracket s h=s h\{(\llbracket e \rrbracket s, f) \rightarrow \mathrm{s}(\mathrm{x})\}$
- $\llbracket x=\operatorname{cons}\left(e_{0} \ldots e_{k}\right) \rrbracket s h=s\{x \rightarrow j\} h\left\{\left(j, f_{0}\right) \rightarrow \llbracket e_{0} \rrbracket s, \ldots,\left(j, f_{k}\right) \rightarrow \llbracket e_{k} \rrbracket s\right\}$
where $j=$ fresh address
This is the view we will focus on today
The pset provides a third alternative
- Each object is indexed by integer offsets rather than fields
- Not significantly different from this alternative

The state as a graph

The state as a graph

$$
\begin{aligned}
& \mathrm{h}(\mathrm{~L} 1, \text { head })=\mathrm{N} 1 \\
& \mathrm{~h}(\mathrm{~L} 1, \text { tail })=\mathrm{N} 4 \\
& \mathrm{~h}(\mathrm{~N} 1, \text { next })=\mathrm{N} 2 \\
& \mathrm{~h}(\mathrm{~N} 2, \text { next })=\mathrm{N} 3 \\
& \mathrm{~h}(\mathrm{~N} 3, \text { next })=\mathrm{N} 4 \\
& \mathrm{~h}(\mathrm{~N} 4, \text { next })=\text { null } \\
& \mathrm{S}(\mathrm{X})=\mathrm{L} 1 \\
& \mathrm{~S}(\mathrm{Y})=\mathrm{N} 3
\end{aligned}
$$

Try 1: A simple abstraction

Have a single node for all objects of the same type

Formal definition

Let $\tau(a d d r)$ be the summary node representing an address (we have one for each type)

- We can define a special node null $=\tau($ null $)$

Abstraction function

- $\alpha(h, S):=(\bar{h}, \bar{S})$
- $\bar{h}(t, f):=\left\{t^{\prime} \mid \exists a \in A d d r, \tau(a)=t \wedge h(a, f)=a^{\prime} \wedge \tau\left(a^{\prime}\right)=t^{\prime}\right\}$
- $\bar{S}(x):=\{\tau(S(x))\}$

Partial order

- $\left(\overline{h_{1}}, \overline{S_{1}}\right) \subseteq\left(\overline{h_{2}}, \overline{S_{2}}\right)$ iff $\forall t, f \bar{h}_{1}(t, f) \subseteq \bar{h}_{2}(t, f) \wedge \forall x \bar{S}_{1}(x) \subseteq \bar{S}_{2}(x)$

Concretization

- $(h, S) \in \gamma(\bar{h}, \bar{S})$ iff

$$
(h(a, f)=b \Rightarrow \tau(b) \in \bar{h}(\tau(a), f)) \wedge(S(x)=a \Rightarrow \tau(a) \in \bar{S}(x))
$$

Update

$\llbracket e . f=x \rrbracket(\bar{h}, \bar{S})=\left(\bar{h}^{\prime}, \bar{S}\right)$
Where $\bar{h}^{\prime}(t, f)=\left\{\begin{array}{c}\bar{h}(t, f) \quad \text { if } t \notin \llbracket e \rrbracket(\bar{h}, \bar{S}) \\ \bar{h}(t, f) \cup \bar{S}(x) \quad \text { if } t \in \llbracket e \rrbracket(\bar{h}, \bar{S})\end{array}\right.$

The problem of destructive updates

$$
\begin{aligned}
& x=\text { new } T(\quad) ; \\
& \Rightarrow x . f=\text { null; } \\
& x . f=\text { new } P(\quad) ;
\end{aligned}
$$

The problem of destructive updates

$$
\begin{aligned}
& x=\text { new } T(\quad) ; \\
& x . f=\text { null; } \\
\Rightarrow & x . f=\text { new } P(\quad) ;
\end{aligned}
$$

The abstraction cannot tell that $x . f$ is no longer null

Why not?

The problem of destructive updates

$x=$ new $T()$;
$x . f=$ null;
$x . f=\operatorname{new} P(\quad)$;

Why is this the best we can do?

$x . f=n e w P() ;$

Abstraction cannot distinguish these two concrete cases

The problem

All abstract heap nodes represented multiple concrete heap nodes

- This makes it impossible to do destructive updates

The abstract domain in the pset is more refined but it suffers from the same problem

Try 2: Abstract based on Variables

"Solving Shape-Analysis Problems in Languages with Destructive Updating" Sagiv, Reps \& Wilhelm

- We'll simplify a little relative to this paper

Idea

- Objects pointed to by variables should be concretized

Example

$$
\begin{aligned}
& x=\text { new } T(\quad) ; \\
& x . f=\text { null; } \\
& x . f=\text { new } T(\quad) ;
\end{aligned}
$$

X always points to a concrete location This allows a destructive update to x.f

Example

$$
\begin{aligned}
& x=\text { new } T(\quad) ; \\
& x . f=\text { null; } \\
& x . f=\text { new } T(\quad) ; \\
& x=x . f \\
& x . f=\text { null }
\end{aligned}
$$

Note that t 1 is "the location pointed to by x " and not a specific concrete node

Formalization

Let PVar be the set of variables. Then the locations in the abstract state will be $\left\{n_{Z} \mid Z \subseteq P V a r\right\}$
Not all n_{Z} will be present in a given abstract state

- In particular, different n_{Z} cannot share variables.

Abstraction

- $\alpha_{s}(a)=n_{Z}$ where $Z=\{x \mid S(x)=a\}$
- $\alpha(h, S):=(\bar{h}, \bar{S})$
- $\bar{h}\left(n_{z}, f\right):=\left\{n_{z^{\prime}} \mid \exists a \in A d d r, \alpha_{s}(a)=n_{z} \wedge h(a, f)=a^{\prime} \wedge \alpha_{s}\left(a^{\prime}\right)=n_{z^{\prime}}\right\}$
- $\bar{S}(x):=\left\{\alpha_{s}(S(x))\right\}$

Partial order

- $\left(\overline{h_{1}}, \overline{S_{1}}\right) \sqsubseteq\left(\overline{h_{2}}, \overline{S_{2}}\right)$ iff $\forall t, f \bar{h}_{1}(t, f) \subseteq \bar{h}_{2}(t, f) \wedge \forall x \bar{S}_{1}(x) \subseteq \bar{S}_{2}(x)$

Update

$\llbracket e . f=x \rrbracket(\bar{h}, \bar{S})=\left(\bar{h}^{\prime}, \bar{S}\right)$
Where $\bar{h}^{\prime}\left(n_{Z}, f\right)=\left\{\begin{array}{lr}\bar{h}\left(n_{Z}, f\right) & \text { if } n_{z} \notin \llbracket e \rrbracket(\bar{h}, \bar{S}) \\ \bar{S}(x) & \text { if } z \neq \emptyset \wedge n_{z} \in \llbracket e \rrbracket(\bar{h}, \bar{S}) \\ \bar{h}\left(n_{z}, f\right) \cup \bar{S}(x) & \text { if } Z=\emptyset \wedge n_{z} \in \llbracket e \rrbracket(\bar{h}, \bar{S})\end{array}\right.$
$\llbracket x=e \rrbracket(\bar{h}, \bar{S})=\left(\bar{h}^{\prime}, \bar{S}^{\prime}\right) \quad$ (Note var update also affects heap)

- Let $\llbracket e \rrbracket(\bar{h}, \bar{S})=\left\{n_{z 0}, \ldots, n_{z k}\right\}$
- $\bar{S}^{\prime}(x)=\left\{n_{z 0 \cup\{x\}}, \ldots, n_{z 0 \cup\{x\}}\right\}$
- For $y \neq x, \quad \bar{S}^{\prime}(y)=\operatorname{replace}\left(n_{z i}, n_{z i \cup\{x\}}, \bar{S}(x)\right)$
- How do we update \bar{h} ?

Updating the heap

Nodes $n_{\{x\}}$ and $n_{\{y\}}$ disappear (become unreachable)
New node $n_{\{x, y\}}$ now pointed by both x and y .
The old $n_{\{x\}}$ is now represented by n_{\emptyset} which acquires a self loop

Updating the heap

Let $E_{S}\left(n_{W}, f, n_{Y}\right) \Leftrightarrow n_{Y} \in \bar{h}\left(n_{W}, f\right) \quad\left(r e s p\right.$. for $\left.E_{S}{ }^{\prime}\right)$
Then after $x=e$ with $\llbracket e \rrbracket(\bar{h}, \bar{S})=\left\{n_{z 0}, \ldots, n_{z k}\right\}$

- $E_{s}\left(n_{W}, f, n_{z_{i}}\right) \Rightarrow E_{s}^{\prime}\left(n_{W}, f, n_{z_{i} \cup\{x\}}\right)$
- And if $W \neq \emptyset E_{s}^{\prime}\left(n_{W}, f, n_{z_{i}}\right)$ should now be false. Why?
- $E_{S}\left(n_{z_{i}}, f, n_{W}\right) \Rightarrow E_{S}^{\prime}\left(n_{z_{i} \cup\{x\}}, f, n_{W}\right)$
- And if $Z_{i} \neq \emptyset E_{s}^{\prime}\left(n_{z_{i}}, f, n_{W}\right)$ should now be false. Why?
- The old $n_{z i}$ turned into $n_{z_{i} \cup\{x\}}$ so things that used to point to $n_{z i}$ now point to $n_{z_{i} \cup\{x\}}$.
- Do we need to do something special when $x \in Z_{i}$?

MIT OpenCourseWare
http://ocw.mit.edu

6.820 Fundamentals of Program Analysis

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

