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Types for Information Flow 
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Recap 

o Functional World: 

- evaluation proceeds through reduction rules 

- types impose constraints on the shape of the program 

- a program with a legal shape (according to the type system) 

• always has an available reduction rule (unless it has terminated) 

• the reduction rule will produce a new program with a legal shape 

Set of possible programs 

Set of programs with 
well defined semantics 

Well Typed Programs 
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Recap 

o Imperative World: 

- evaluation involves updating a store 

- types place restrictions on the program store 

• this allows static reasoning about legal operations on the objects in 

the store 

Set of possible programs 

Set of programs with 
well defined semantics 

Well Typed Programs 
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Recap 

o Imperative World: 

- evaluation involves updating a store 

- types place restrictions on the program store 

• this allows static reasoning about legal operations on the objects in 

the store 
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Enforcing Security Properties 

Rx Wikipedia 
Confidentiality 

Rx myrx = getMyRx(); 
Wikipedia w = getWPEntry(“Armando”); 
 
w.addEntry(myrx.toString()); 
 

w.write(“Hemorrhoids :”); 
if(myrx.contains(“Preparation H”)){ 
 w.write(“YES”); 
} 
 

Private Public 
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Enforcing Security Properties 

Rx Wikipedia 
Confidentiality 

Rx myrx = getMyRx(); 
Wikipedia w = getWPEntry(“Armando”); 
 
w.write(“Hemorrhoids :”); 
p.val = myrx.contains(“Preparation H”); 
if(q.val){ 
 w.write(“YES”); 
} 
 

Private Public 

If p==q information clearly leaks 

Even if p!=q, information can 
still leak if p!=q was caused by 
some information about myrx. 
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Enforcing Security Properties 

Rx Wikipedia 
Integrity 

class Doctor{ 
 Rx cureFlu(){ 
  Rx myrx = new Rx(); 
  Wikipedia w = getWPEntry(“Flu”); 
  myrx.set(w.getSubEntry(“Treatment”)); 
  return myrx; 
 } 
} 

Private Public 
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What is information flow? 

o If there is no information flow from private to public, then 

a change in a private input can not affect a public output 

- you can’t determine this from a single execution 
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Solution Strategy 

o We proceed through the following two steps 

- Define a dynamic labeling scheme so that at any given time, the 

labels in a piece of data tell us whether it’s OK to leak it or not.  

• Labels turn a global property about all executions into a local 

property in a conservative way 

• This will be the dynamic semantics against which we can prove type 

safety. 

- Define a type system that allows us to approximate the set of 

labels that the data pointed at by a variable can have. 

• If an action is ok according to the conservative approximation, we 

know it would be ok according to the dynamic scheme. 
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Labeling Data With Security Policies 

o Policies for information flow 

 

 

- “according to owner, this data can only be read by reader1, 

reader2, or reader3” 

 

o Label 

 

- If an owner is not mentioned, it is assumed she has no privacy 

concerns 

Owner: reader1, reader2, reader3 

{ policy1, policy2, policy3 } 

Why do we need an owner? 

Revocation 
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Principals 

o Owners and readers are principals 

- user, group or role 

 

o act_for relationship 

- allows principals to act for other principals 

 
Armando act_for Faculty 
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Labels form a lattice 

o L1 can be relabeled to L2 

- means that L2 is more restrictive (fewer readers) 

- Warning: this is counterintuitive 

• L2 actually has fewer readers. 

o Partial Order defines a lattice 

- Least upper bound ⊔ 

- Least fixed point  

- bottom 

o If a variable is certified to handle data with L2 labels 

correctly, we can trust that variable to hold a value with 

label L1 
- Just like subtyping! 

 

L1 <= L2 
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Labels form a lattice 

o Question 

{Joe: Ann, Jill} <= {Joe:Ann} 

 

{Joe: (Ann, Jill), Tim:Ann} <= {Joe:(Ann),  Tim:Ann} 

 

 

{Joe: (Ann), Tim:Ann}    ???       {Joe:(Ann)} 
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Assignment 

o Can only assign to a variable to a more restrictive label 

x{L2} := v{L1}; 

L1 <= L2 
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Binary Operations 

o Trick question: 

- What should be the label for a+b? 

 

 

 

 

 

 

 

- What information would be leaked if this code were to execute? 

a{L1} + b{L2}; 

int{Joe:everyone} a, b, c; 
... 
int{Joe:Joe} p; 
c = 0; 
if(p){ 
    c = a + b; 
} 
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Information flow through control 

o Information flow through the PC 

- We need to keep track of the information that is leaked just from 

knowing that the computation reached a particular point. 

 

 

 

 

 

 

 

 

o Simple scheme except for non-structured control 

- return, continue, throw, break 

int{Joe:everyone} a, b, c; 
... 
int{Joe:Joe} p; 
c = 0; 
if(p){ 
    c = a + b; 
} 

{} 

PC Label 

{Joe:Joe} 
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Formalizing the type system 

o Basic judgments 
 𝐴 ⊢ 𝐸 ∶ 𝑋 

Type Environment 

Expression 

Set of relevant labels.  

X is a map with several values 

• X[nv] = label of the expression if it terminates normally 

• X[n] = label that would be leaked if execution terminated 

after evaluating this expression 

• ...  
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Rules 

If evaluating a literal somehow 

caused the program to 

terminate, I would leak the pc 

label. 

The value of the literal also 

carries information about the 

PC label. 

if(p){ 

   x = literal 

} 

This is what prevents the code 

above from leaking 

information; the assignment 

only type checks if x is 

compatible with the PC label 
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Rules 

 

Least upper bound. The return 

value must carry the labels of 

both the variable and the pc. 
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Rules 

This is the label of expression E. 

It has to be less restrictive than L 
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Rules 

This computes the join of XE, 
X1, X2, except we don’t care 
about XE[n] so we set it to 
{}. 
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Rules 

extend the environment to add 
any new variable declarations 

update PC in the new 
environment 
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Example 

 

o x {Joe: Erika} = {Joe: Erika, Peter} 

o if(x){ 

o    p{Tim:Erika, Joe:Erika} = {Tim: Everyone} 

o } 
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