
Armando Solar-Lezama

Computer Science and Artificial Intelligence Laboratory

MIT

Based on the paper by Myers, A. C. “JFlow: practical mostly-static

information flow control”. In POPL '99

October 14, 2015

October 14, 2015

Types for Information Flow

1

Recap

o Functional World:

- evaluation proceeds through reduction rules

- types impose constraints on the shape of the program

- a program with a legal shape (according to the type system)

• always has an available reduction rule (unless it has terminated)

• the reduction rule will produce a new program with a legal shape

Set of possible programs

Set of programs with
well defined semantics

Well Typed Programs

2

Recap

o Imperative World:

- evaluation involves updating a store

- types place restrictions on the program store

• this allows static reasoning about legal operations on the objects in

the store

Set of possible programs

Set of programs with
well defined semantics

Well Typed Programs

3

Recap

o Imperative World:

- evaluation involves updating a store

- types place restrictions on the program store

• this allows static reasoning about legal operations on the objects in

the store

g

p

n 25

Grandma

Potato

void hug()

void slice()
void fry()

p.hug()

g.fry()

n.hug()

4

Enforcing Security Properties

Rx Wikipedia
Confidentiality

Rx myrx = getMyRx();
Wikipedia w = getWPEntry(“Armando”);

w.addEntry(myrx.toString());

w.write(“Hemorrhoids :”);
if(myrx.contains(“Preparation H”)){
 w.write(“YES”);
}

Private Public

5

Enforcing Security Properties

Rx Wikipedia
Confidentiality

Rx myrx = getMyRx();
Wikipedia w = getWPEntry(“Armando”);

w.write(“Hemorrhoids :”);
p.val = myrx.contains(“Preparation H”);
if(q.val){
 w.write(“YES”);
}

Private Public

If p==q information clearly leaks

Even if p!=q, information can
still leak if p!=q was caused by
some information about myrx.

6

Enforcing Security Properties

Rx Wikipedia
Integrity

class Doctor{
 Rx cureFlu(){
 Rx myrx = new Rx();
 Wikipedia w = getWPEntry(“Flu”);
 myrx.set(w.getSubEntry(“Treatment”));
 return myrx;
 }
}

Private Public

7

What is information flow?

o If there is no information flow from private to public, then

a change in a private input can not affect a public output

- you can’t determine this from a single execution

Program

Public

Li

Private

Hi

Public

Lo
Private

Ho

Program

Public

Li

Private

H’i

Public

Lo
Private

H’o

For all Li, Hi, H
’
i

8

Solution Strategy

o We proceed through the following two steps

- Define a dynamic labeling scheme so that at any given time, the

labels in a piece of data tell us whether it’s OK to leak it or not.

• Labels turn a global property about all executions into a local

property in a conservative way

• This will be the dynamic semantics against which we can prove type

safety.

- Define a type system that allows us to approximate the set of

labels that the data pointed at by a variable can have.

• If an action is ok according to the conservative approximation, we

know it would be ok according to the dynamic scheme.

9

Labeling Data With Security Policies

o Policies for information flow

- “according to owner, this data can only be read by reader1,

reader2, or reader3”

o Label

- If an owner is not mentioned, it is assumed she has no privacy

concerns

Owner: reader1, reader2, reader3

{ policy1, policy2, policy3 }

Why do we need an owner?

Revocation
10

Principals

o Owners and readers are principals

- user, group or role

o act_for relationship

- allows principals to act for other principals

Armando act_for Faculty

11

Labels form a lattice

o L1 can be relabeled to L2

- means that L2 is more restrictive (fewer readers)

- Warning: this is counterintuitive

• L2 actually has fewer readers.

o Partial Order defines a lattice

- Least upper bound ⊔

- Least fixed point

- bottom

o If a variable is certified to handle data with L2 labels

correctly, we can trust that variable to hold a value with

label L1
- Just like subtyping!

L1 <= L2

12

Labels form a lattice

o Question

{Joe: Ann, Jill} <= {Joe:Ann}

{Joe: (Ann, Jill), Tim:Ann} <= {Joe:(Ann), Tim:Ann}

{Joe: (Ann), Tim:Ann} ??? {Joe:(Ann)}

13

Assignment

o Can only assign to a variable to a more restrictive label

x{L2} := v{L1};

L1 <= L2

14

Binary Operations

o Trick question:

- What should be the label for a+b?

- What information would be leaked if this code were to execute?

a{L1} + b{L2};

int{Joe:everyone} a, b, c;
...
int{Joe:Joe} p;
c = 0;
if(p){
 c = a + b;
}

15

Information flow through control

o Information flow through the PC

- We need to keep track of the information that is leaked just from

knowing that the computation reached a particular point.

o Simple scheme except for non-structured control

- return, continue, throw, break

int{Joe:everyone} a, b, c;
...
int{Joe:Joe} p;
c = 0;
if(p){
 c = a + b;
}

{}

PC Label

{Joe:Joe}

16

Formalizing the type system

o Basic judgments
 𝐴 ⊢ 𝐸 ∶ 𝑋

Type Environment

Expression

Set of relevant labels.

X is a map with several values

• X[nv] = label of the expression if it terminates normally

• X[n] = label that would be leaked if execution terminated

after evaluating this expression

• ...

17

Rules

If evaluating a literal somehow

caused the program to

terminate, I would leak the pc

label.

The value of the literal also

carries information about the

PC label.

if(p){

 x = literal

}

This is what prevents the code

above from leaking

information; the assignment

only type checks if x is

compatible with the PC label

18

Rules

Least upper bound. The return

value must carry the labels of

both the variable and the pc.

19

Rules

This is the label of expression E.

It has to be less restrictive than L

20

Rules

This computes the join of XE,
X1, X2, except we don’t care
about XE[n] so we set it to
{}.

21

Rules

extend the environment to add
any new variable declarations

update PC in the new
environment

22

Example

o x {Joe: Erika} = {Joe: Erika, Peter}

o if(x){

o p{Tim:Erika, Joe:Erika} = {Tim: Everyone}

o }

23

MIT OpenCourseWare
http://ocw.mit.edu

6.820 Fundamentals of Program Analysis
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

