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Type Inference 

 

• Consider the following expression 
– (𝜆f:int int. f 5) (𝜆x:int. x + 1) 

• Is it well typed in F1? 
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Type Inference 

• There wasn’t a single point in the derivation 
where we had to look at the type labels in 
order to know what rule to apply! 
– we could have written the derivation without the labels 

 

• The labels helped us determine the actual 
types for all the 𝜏s in the typing rules. 
– we could have figured these out even without the labels 

– this is the key idea behind type inference! 
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Type Inference Strategy 1 

• 1. Use the typing rules to define 
constraints on the possible types of 
expressions 

 

• 2. Solve the resulting constraint system 
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Deducing Types 

     1.  Assign types to every subexpression 
x :: t0           f :: t1 

   f x :: t2     f (f x) :: t3 

  twice ::                       ? 

  twice f x = f (f x) 

What is the most "general type" for twice? 

2.  Set up the constraints 
t1 =                because of (f x) 
t1 =                because of f (f x) 

3.  Resolve the constraints 
 t0 -> t2 = t2 -> t3  

   t0 = t2 and  t2 = t3  t0 = t2 = t3 

   twice :: (t0 -> t0) -> t0 -> t0 

t1 -> t0 -> t3 

t0 -> t2 

t2 -> t3 

September 8, 2011 
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The language of Equality Constraints 

• Consider the following Language of 
Constraints 

 

 

• Constraints in this language have a lot of 
good properties 
– Nice and compositional 

– Linear time solution algorithm 
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Building Constraints from Typing 
Rules 

• Notation 

 
– The constraints on the right ensure that the 

judgment on the left holds 

– This mapping is defined recursively. 

• Base cases 

 

• Inductive Cases   

 

Γ ⊢ 𝑒1 + 𝑒2: 𝜏 =  Γ ⊢ 𝑒1: 𝑖𝑛𝑡 ∧ Γ ⊢ 𝑒2: 𝑖𝑛𝑡 ∧ 𝜏 = 𝑖𝑛𝑡 
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Back to our example 

o                      (𝜆f. f 5) (𝜆x. x + 1) 

 



 L06-9 

Equality and Unification 

• What does it mean for two types a and b to 
be equal? 
– Structural Equality 
    Suppose a = 1 -> 2   
                  b = 3 -> 4 
    Is a = b  ?  
 

iff 1 = 3 and 2 = 4  

• Can two types be made equal by choosing 
appropriate substitutions for their type 
variables? 
– Robinson’s unification algorithm 
    Suppose  a  = t1    -> Bool  
      b  = Int -> t2 
    Are a and b   unifiable ?  if t1= Int and t2= Bool 

Suppose  a = t1-> Bool  
    b = Int -> Int 

Are a and b unifiable ? No 
September 27, 2011 
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Simple Type Substitutions 
needed to define type unification 

A substitution is a map 
 S : Type Variables   Types 
 S = [1 / t1,..., n / tn] 
 ’ = S  ’  is a Substitution Instance of  
Example:  
 S = [(t -> Bool) / t1] 
 S ( t1 -> t1) =            ? 
Substitutions can be composed,  i.e., S2 S1 

Example:       

  S1 = [(t -> Bool) / t1] ; S2 = [Int / t]  

         S2 S1 ( t1 -> t1)     ? 

Types  
 ::=     base types (Int, Bool ..) 

|  t    type variables 
|   ->  Function types 

( t -> Bool) -> ( t -> Bool)  

= S2 (( t -> Bool) -> ( t -> Bool)) 
= ( Int -> Bool) -> ( Int -> Bool) 

September 27, 2011 
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Unification 
An essential subroutine for type inference 

def Unify(1, 2) = 
case   (1, 2) of 

(1, t2) = [1 / t2]  provided t2  FV(1) 
(t1, 2) = [2 / t1]  provided t1  FV(2) 
(1, 2) = if (eq? 1 2) then [ ] 

               else  fail 
 (11->12, 21 ->22)  
  = 

Unify(1, 2)  tries to unify 1 and 2 and returns a 
substitution if successful  

Does the order matter? 

let S1=Unify(11, 21)  
 S2=Unify(S1(12), S1(22)) 
 in  S2 S1 

 otherwise = fail  

No 

September 27, 2011 
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Type inference strategy 2 

• Like strategy 1, but we solve the 
constraints as we see them 
– Build the substitution map incrementally 

September 29, 2011 
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Simple Inference Algorithm 

W(TE, e) returns (S,) such that S (TE) ├ e :  
 

The type environment TE records the most 
general type of each identifier while the 
substitution S records the changes in the type 
variables   

Def W(TE, e) = 
Case e of 
  x    = ... 
  n                      =        ... 
  x.e    = ... 
  (e1 e2)   = ... 
... 

September 27, 2011 

This is just Γ (it’s hard to write Γ in code) 
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Simple Inference Algorithm (cont-1) 

Def W(TE, e) =  
  Case e of 

N        = 
x        =  
 
 
 
 
x.e   = 
 
 
 
(e1 e2)  = 
 

      
 

let (S1, 1) = W(TE, e1); 
     (S2, 2) = W(S1(TE), e2); 
 S3   = Unify(S2(1), 2 -> u); 
in   (S3 S2 S1, S3(u))  

September 27, 2011 

let  (S1, 2)= W(TE + { x : u }, e) 
in   (S1, S1(u) -> 2) 

if  (x  Dom(TE)) then Fail 
else  let    = TE(x); 
        in   ({},  ) 

({}, Typeof(N)) 

u’s 
represent 
new type 
variables 
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Simple Inference Algorithm (cont-1) 

Def W(TE, e) =  
  Case e of 

c        = 
x        =  
 
 
x.e   = 
 
(e1 e2)  = 
 

      
 
      let  x = e1 in  e2 
        =   

u’s 
represent 
new type 
variables 

let (S1, 1) = W(TE, e1); 
     (S2, 2) = W(S1(TE), e2); 
 S3   = Unify(S2(1), 2 -> u); 
in   (S3 S2 S1, S3(u))  

let (S1, 1) = W(TE + {x : u}, e1); 
       S2      = Unify(S1(u), 1); 
     (S3, 2) = W(S2 S1(TE) + {x : }, e2); 
in   (S3 S2 S1, 2) 

September 27, 2011 

let  (S1, 1) = W(TE + { x : u }, e) 
in   (S1, S1(u) -> 1) 

if  (x  Dom(TE)) then Fail 
else  let    = TE(x); 
        in   ({},  ) 

({}, Typeof(c)) 



Example 
Def W(TE, e) =  

  Case e of 

… 

 x.e    =  let  (S1, 1) = W(TE + { x : u }, e) 
               in   (S1, S1(u) -> 1) 

    (e1 e2) = let (S1, 1) = W(TE, e1); 
                       (S2, 2) = W(S1(TE), e2); 
                            S3   = Unify(S2(1), 2 -> u); 
                  in   (S3 S2 S1, S3(u))  

𝑊(∅, 𝜆𝑓. 𝑓 5 𝜆𝑥. 𝑥 ) 

𝑊 ∅, 𝜆𝑓. 𝑓 5 = 

𝑊 𝑓: 𝑢0 , 𝑓 5 = 

𝑊 𝑓:𝑢0 , 𝑓 = (∅, 𝑢0) 𝑊 𝑓:𝑢0 , 5 = (∅, 𝐼𝑛𝑡) 

𝑈𝑛𝑖𝑓𝑦 𝑢0, 𝐼𝑛𝑡 → 𝑢1 = 



Example 

𝑊(∅, 𝜆𝑓. 𝑓 5 𝜆𝑥. 𝑥 ) 

𝑊 ∅, 𝜆𝑓. 𝑓 5 = 

𝑊 𝑓: 𝑢0 , 𝑓 5 = 

𝑊 𝑓:𝑢0 , 𝑓 = (∅, 𝑢0) 𝑊 𝑓:𝑢0 , 5 = (∅, 𝐼𝑛𝑡) 

𝑈𝑛𝑖𝑓𝑦 𝑢0, 𝐼𝑛𝑡 → 𝑢1 =  

def Unify(1, 2) = 
   case   (1, 2) of 

(1, t2) = [1 / t2]  provided t2  FV(1) 

(t1, 2) = [2 / t1]  provided t1  FV(2) 

(1, 2) = if (eq? 1 2) then [ ] 
               else  fail 

 (11->12, 21 ->22)  
  = let S1=Unify(11, 21)  
                                             S2=Unify(S1(12), S1(22)) 

 in  S2 S1 

[(𝐼𝑛𝑡 → 𝑢1) 𝑢0 ] 



Example 

𝑊(∅, 𝜆𝑓. 𝑓 5 𝜆𝑥. 𝑥 ) 

𝑊 ∅, 𝜆𝑓. 𝑓 5 = 

𝑊 𝑓: 𝑢0 , 𝑓 5 = 

𝑊 𝑓:𝑢0 , 𝑓 = (∅, 𝑢0) 𝑊 𝑓:𝑢0 , 5 = (∅, 𝐼𝑛𝑡) 

𝑈𝑛𝑖𝑓𝑦 𝑢0, 𝐼𝑛𝑡 → 𝑢1 =  [(𝐼𝑛𝑡 → 𝑢1) 𝑢0 ] 

Def W(TE, e) =  

  Case e of 

… 

 x.e    =  let  (S1, 1) = W(TE + { x : u }, e) 
               in   (S1, S1(u) -> 1) 

    (e1 e2) = let (S1, 1) = W(TE, e1); 
                       (S2, 2) = W(S1(TE), e2); 
                            S3   = Unify(S2(1), 2 -> u); 
                  in   (S3 S2 S1, S3(u))  

([𝐼𝑛𝑡 → 𝑢1 𝑢0 ], 𝑢1) 

( (𝐼𝑛𝑡 → 𝑢1) 𝑢0 , 𝐼𝑛𝑡 → 𝑢1 → 𝑢1) 



Example 

𝑊(∅, 𝜆𝑓. 𝑓 5 𝜆𝑥. 𝑥 ) 

𝑊 ∅, 𝜆𝑓. 𝑓 5 = 

Def W(TE, e) =  

  Case e of 

… 

 x.e    =  let  (S1, 1) = W(TE + { x : u }, e) 
               in   (S1, S1(u) -> 1) 

    (e1 e2) = let (S1, 1) = W(TE, e1); 
                       (S2, 2) = W(S1(TE), e2); 
                            S3   = Unify(S2(1), 2 -> u); 
                  in   (S3 S2 S1, S3(u))  

( (𝐼𝑛𝑡 → 𝑢1) 𝑢0 , 𝐼𝑛𝑡 → 𝑢1 → 𝑢1) 

𝑊 ∅, 𝜆𝑥. 𝑥 = (∅, 𝑢3 → 𝑢3) 

𝑈𝑛𝑖𝑓𝑦 𝐼𝑛𝑡 → 𝑢1 → 𝑢1, 𝑢3 → 𝑢3 → 𝑢4 =  



Example 

𝑊(∅, 𝜆𝑓. 𝑓 5 𝜆𝑥. 𝑥 ) 

𝑈𝑛𝑖𝑓𝑦 𝐼𝑛𝑡 → 𝑢1 → 𝑢1, 𝑢3 → 𝑢3 → 𝑢4 =  

def Unify(1, 2) = 
   case   (1, 2) of 

(1, t2) = [1 / t2]  provided t2  FV(1) 

(t1, 2) = [2 / t1]  provided t1  FV(2) 

(1, 2) = if (eq? 1 2) then [ ] 
               else  fail 

 (11->12, 21 ->22)  
  = let S1=Unify(11, 21)  
                                             S2=Unify(S1(12), S1(22)) 

 in  S2 S1 

𝑈𝑛𝑖𝑓𝑦 𝐼𝑛𝑡, 𝑢4 = [𝐼𝑛𝑡 𝑢4 ] 

𝑈𝑛𝑖𝑓𝑦 𝐼𝑛𝑡 → 𝑢1 , 𝑢3 → 𝑢3 = 𝐼𝑛𝑡 𝑢3 ; 𝐼𝑛𝑡 𝑢1  

𝐼𝑛𝑡 𝑢3 ; 𝐼𝑛𝑡 𝑢1 ; 𝐼𝑛𝑡/𝑢4  



Example 

𝑊 ∅, 𝜆𝑓. 𝑓 5 𝜆𝑥. 𝑥 = 

𝑊 ∅, 𝜆𝑓. 𝑓 5 = 

Def W(TE, e) =  

  Case e of 

… 

 x.e    =  let  (S1, 1) = W(TE + { x : u }, e) 
               in   (S1, S1(u) -> 1) 

    (e1 e2) = let (S1, 1) = W(TE, e1); 
                       (S2, 2) = W(S1(TE), e2); 
                            S3   = Unify(S2(1), 2 -> u); 
                  in   (S3 S2 S1, S3(u))  

( (𝐼𝑛𝑡 → 𝑢1) 𝑢0 , 𝐼𝑛𝑡 → 𝑢1 → 𝑢1) 

𝑊 ∅, 𝜆𝑥. 𝑥 = (∅, 𝑢3 → 𝑢3) 

𝑈𝑛𝑖𝑓𝑦 𝐼𝑛𝑡 → 𝑢1 → 𝑢1, 𝑢3 → 𝑢3 → 𝑢4 =  𝐼𝑛𝑡 𝑢3 ; 𝐼𝑛𝑡 𝑢1 ; 𝐼𝑛𝑡/𝑢4  

( (𝐼𝑛𝑡 → 𝑢1) 𝑢0 ; 𝐼𝑛𝑡 𝑢3 ; 𝐼𝑛𝑡 𝑢1 ; 𝐼𝑛𝑡/𝑢4 , 𝐼𝑛𝑡) 
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What about Let? 

• 𝑙𝑒𝑡 𝑥 = 𝑒1 𝑖𝑛 𝑒2 

• Typing rule 

–
Γ;𝑥:𝜏′⊢𝑒1:𝜏

′        Γ;𝑥:𝜏′⊢𝑒2:𝜏

Γ ⊢𝑙𝑒𝑡 𝑥=𝑒1𝑖𝑛 𝑒2∶𝜏
 

• Constraints 
– Γ ⊢ 𝑙𝑒𝑡 𝑥 = 𝑒1𝑖𝑛 𝑒2 ∶ 𝜏 = 

∃𝜏′, Γ; 𝑥: 𝜏′ ⊢ 𝑒1: 𝜏
′ ∧ Γ; 𝑥: 𝜏′ ⊢ 𝑒2: 𝜏  

 

• Algorithm 

September 29, 2011 

Case Exp = let  x = e1 in  e2  
=> let (S1, 1) = W(TE + {x : u}, e1); 
             S2      = Unify(S1(u), 1); 
           (S3, 2) = W(S2 S1(TE) + {x : }, e2); 
           in   (S3 S2 S1, 2) 

 

This is Hindley Milner 

 without polymorphism 
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Polymorphism 

September 27, 2011 
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Some observations   

• A type system restricts the class of 
programs that are considered “legal” 

• It is possible a term in the untyped –
calculus may be reducible to a value but 
may not be typeable in a particular type 
system  

let    
      id = x. x  
in 

... (id True) ... (id 1) ... 

This term is not typeable in the simple type 
system we have discussed so far. However, 
it is typeable in the Hindley-Milner system 

September 29, 2011 
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Explicit polymorphism 

• You’ve seen this before 

 

 

 

• How do we formalize this? 

 

 

 

 

• Example 

 𝑖𝑑 = Λ𝑇. 𝜆𝑥 ∶ 𝑇. 𝑥 

 𝑖𝑑 𝑖𝑛𝑡  5 
September 27, 2011 

public interface List<E>{ 

 void add(E x); 

 E get(); 

} 

List<String> ls = ...  

ls.add("Hello"); 

String hello = ls.get(0); 

Γ ⊢ 𝑒 ∶ 𝜏

Γ  ⊢  Λ𝑡. 𝑒 ∶ ∀𝑡. 𝜏
 

Γ ⊢ 𝑒 ∶ ∀𝑡. 𝜏′

Γ  ⊢ 𝑒[𝜏] ∶ 𝜏′[𝜏  / 𝑡]
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Different Styles of 
Polymorphism 

• Impredicative Polymorphism 

 𝜏 ::= 𝑏  𝜏1 → 𝜏2  𝑇 | ∀𝑇. 𝜏 

 e ::= 𝑥  𝜆𝑥: 𝜏. 𝑒  𝑒1𝑒2  ΛT. e  e[𝜏] 

 

• Very powerful 
– Although you still can’t express recursion 

• Type inference is undecidable ! 
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Different Styles of 
Polymorphism 

• Predicative Polymorphism 

 𝜏 ::= 𝑏  𝜏1 → 𝜏2  𝑇  

 𝜎 ∷= 𝜏  ∀𝑇. 𝜎  𝜎1 → 𝜎2 

 e ::= 𝑥  𝜆𝑥: 𝜎. 𝑒  𝑒1𝑒2  ΛT. e  e[𝜏] 

 

• Still very powerful 
– But you can no longer instantiate with a polymorphic type 

• Type inference is still undecidable ! 
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Different Styles of 
Polymorphism 

• Prenex Predicative Polymorphism 

 𝜏 ::= 𝑏  𝜏1 → 𝜏2  𝑇  

 𝜎 ∷= 𝜏 |∀𝑇. 𝜎 

 e ::= 𝑥  𝜆𝑥: 𝜏. 𝑒  𝑒1𝑒2  ΛT. e  e[𝜏] 

 

• Now we have decidable type inference 

• But polymorphism is now very limited 
– We can’t pass polymorphic functions as arguments!! 

 

– (𝜆𝑠: ∀𝑇 . 𝜏 … 𝑠 𝑖𝑛𝑡 𝑥 … 𝑠 𝑏𝑜𝑜𝑙 𝑥)(Λ𝑇. 𝑐𝑜𝑑𝑒 𝑓𝑜𝑟 𝑠𝑜𝑟𝑡) 
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Let polymorphism 

• Introduce let x = e1 in e2 
– Just like saying 𝜆𝑥. 𝑒2 𝑒1  

– Except x can be polymorphic 

 

 

 

• Good engineering compromise 
– Enhance expressiveness 

– Preserve decidability 

 

• This is the Hindley Milner type system 

September 29, 2011 
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Type inference with 
polymorphism 

September 27, 2011 
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Polymorphic Types 

Constraints:   

let    
      id = x. x  
in 

... (id True) ... (id 1) ... 

id :: t1       --> t1 
id :: Int   --> t2 
id :: Bool --> t3 

Does not unify!! 

id :: t1. t1 --> t1 

Different uses of a generalized type variable  
may be instantiated  differently 

id2 : Bool --> Bool 
id1 : Int --> Int 

Solution: Generalize the type variable 

When can we 

generalize? 

September 29, 2011 
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A mini Language 
to study Hindley-Milner Types 

• There are no types in the syntax of the language! 
 
• The type of each subexpression is derived by the 

Hindley-Milner type inference algorithm. 

 

Expressions  
E ::= c    constant  

|  x    variable 
|  x. E   abstraction 
|  (E1 E2)   application 
|  let  x = E1 in E2  let-block 

 

September 29, 2011 



 L06-33 

A Formal Type System 

Note, all the ’s occur in the beginning of a type scheme, 
i.e., a type  cannot contain a type scheme   

Types  
   ::=      base types  

  | t     type variables 
  | 1 -> 2  Function types 

 

Type Schemes  
  ::=  
       | t.  

 

Type Environments  
TE ::= Identifiers  Type Schemes 

September 29, 2011 
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Instantiations 

• Type scheme  can be instantiated into a type ’ by 
substituting types for the bound variables of , i.e., 
 
    ’ = S    for some S s.t. Dom(S)  BV() 

 
 - ’ is said to be an instance of  ( > ’) 

  
 - ’ is said to be a generic instance of  when S 

maps variables to new variables. 
 

 

 = t1...tn.  

Example:   
   =t1. t1 -> t2 

t3 -> t2  is a generic instance of  
Int -> t2 is a non generic instance of  

September 29, 2011 
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Generalization aka Closing 

• Generalization introduces polymorphism 
 

• Quantify type variables that are free in  
but not free in the type environment (TE) 
 

• Captures the notion of new type variables 
of  

Gen(TE,) =  t1...tn.    
   where  { t1...tn } = FV() - FV(TE) 

September 29, 2011 
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HM Type Inference Rules 

(App)     
Γ⊢𝑒1:𝜏→𝜏′     Γ⊢𝑒2:𝜏

Γ⊢ 𝑒1𝑒2 :𝜏′
  

(Abs)  
Γ ; 𝑥:𝜏 ⊢𝑒∶𝜏′

Γ⊢𝜆𝑥.𝑒∶𝜏→𝜏′
 

(Var)  
𝑥:𝜎 ∈Γ  𝜎≥𝜏

Γ⊢𝑥:𝜏
 

(Const) 
𝑡𝑦𝑝𝑒𝑜𝑓(𝑐)≥𝜏

Γ⊢𝑐:𝜏
 

(Let)     
Γ; 𝑥:𝜏 ⊢𝑒1:𝜏    Γ; 𝑥:𝐺𝑒𝑛(Γ,𝜏) ⊢𝑒2:𝜏′

Γ⊢(𝑙𝑒𝑡 𝑥=𝑒1 𝑖𝑛 𝑒2):𝜏′
       

September 29, 2011 

𝑥 can be considered of type 𝜏 as 
long as its type as specified in the 
environment can be specialized to 
𝜏 (i.e. 𝜏 is an instance of 𝜎) 

Note: x has a different type in 𝑒1 
than in 𝑒2. In 𝑒1, x is not a 
polymorphic type, but in 𝑒2 it gets 
generalized into one. 

Remember, 𝜏 stands for a 
monotype, 𝜎 for a 
polymorphic type 
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HM Inference Algorithm 

Def W(TE, e) = Case e of 
c        = ({}, Typeof(c)) 
x        = 
 
 
x.e  = 
 
(e1 e2)  = 
 

      
 
      let  x = e1 in  e2 
        =   

u’s 
represent 
new type 
variables 

let (S1, 1) = W(TE, e1); 
     (S2, 2) = W(S1(TE), e2); 
 S3   = Unify(S2(1), 2 -> u); 
in   (S3 S2 S1, S3(u))  

if  (x  Dom(TE)) then Fail 
else  let  t1...tn.  = TE(x); 
         in   ( { }, [ui / ti] ) 

let  (S1, 1) = W(TE + { x : u }, e); 
in   (S1, S1(u) -> 1) 

let (S1, 1) = W(TE + {x : u}, e1); 
      S2       = Unify(S1(u), 1); 
               = Gen(S2 S1(TE), S2(1) ); 
     (S3, 2) = W(S2 S1(TE) + {x : }, e2); 
in   (S3 S2 S1, 2) 

September 29, 2011 
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Hindley-Milner: Example 

x. let f = y.x 

    in (f 1, f True) 

W(, A) = 

W({x : u1}, B) = 

( [ ] , u1 ) 

( [ ] , u3 -> u1 ) 

u3.u3 -> u1 

TE = {x : u1, f : u3.u3 -> u1} 

( [ ] , u4 -> u1 ) 

W(TE, 1) =  ( [ ] , Int ) 
[ Int / u4 , u1 / u5 ] 

( [ ] , u1 ) 

( [ ] , (u1,u1) ) 

Unify(u4 -> u1 , Int -> u5)  = 

W({x : u1, f : u2, y : u3}, x) = 

W({x : u1, f : u2}, y.x) = 

Gen({x : u1}, u3 -> u1)  = 

W(TE, (f 1) ) = 

( [ ] , u1 -> (u1,u1) ) 

W(TE, f) = 

Unify(u2 , u3 -> u1)  = 

A B 

[ (u3 -> u1) / u2 ] 

... 
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Important Observations 

• Do not generalize over type variables used 
elsewhere 

 

• Let is the only way of defining polymorphic 
constructs 

 

• Generalize the types of let-bound identifiers 
only after processing their definitions 
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Properties of HM Type Inference 

• It is sound with respect to the type system. 
 An inferred type is verifiable. 

 
• It generates most general types of expressions. 
 Any verifiable type is inferred. 

 
• Complexity 

PSPACE-Hard 
Nested let blocks 
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Extensions 

• Type Declarations 
 Sanity check; can relax restrictions 

 
• Incremental Type checking 
 The whole program is not given at the same 
 time,  sound inferencing when types of some 
 functions are not known 

 
• Typing references to mutable objects 
 Hindley-Milner system is unsound for a 
 language with refs (mutable locations) 
 
• Overloading Resolution 
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HM Limitations: 
 -bound vs Let-bound Variables 

Only let-bound identifiers can be instantiated 
differently. 
 

let   
    twice f x = f (f x) 
in 
    twice twice succ 4 
 

           versus 
 
let   
    twice f x = f (f x) 
    foo g = (g g succ) 4  
in 
   foo twice 

foo is not 
type correct ! 

Generic vs. Non-generic type variables 
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Puzzle: Another set of Inference rules 

(Gen)   TE ├ e :       t  FV(TE) 

  TE ├ e : t.       
 
(Spec)  TE ├ e : t.       

  TE ├ e :  [u/t]        
 

(Var)  (x : )    TE 

  TE ├ x :   
 

(Let)  TE+{x:} ├ e1:       TE+{x:} ├ e2:’ 

  TE ├ (let x = e1 in e2) : 
’  

 
(App) and (Abs) rules remain unchanged.  

Sound but 
no 
inference 
algorithm ! 

 

September 29, 2011 



MIT OpenCourseWare

http://ocw.mit.edu

6.820 Fundamentals of Program Analysis
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



