Type Inference and the Hindley-Milner Type System

Armando Solar-Lezama
Computer Science and Artificial Intelligence Laboratory M.I.T.

With slides from Arvind. Used with permission.
September 29, 2011

Type Inference

- Consider the following expression
- ($\lambda \mathrm{f}:$ int \rightarrow int. f 5) ($\lambda x:$ int. $x+1$)
- Is it well typed in F_{1} ?
$\frac{x: \tau \in \Gamma}{\Gamma \vdash x: \tau}$

$$
\frac{\Gamma, \mathrm{x}: \tau_{1} \vdash e: \tau_{2}}{\Gamma \vdash\left(\lambda x: \tau_{1} e\right): \tau_{1} \rightarrow \tau_{2}}
$$

$$
\frac{\Gamma \vdash e_{1}: \tau^{\prime} \rightarrow \tau \quad \Gamma \vdash e_{2}: \tau^{\prime}}{\Gamma \vdash e_{1} e_{2}: \tau}
$$

$$
\overline{\Gamma \vdash N: \operatorname{int}} \quad \frac{\Gamma \vdash e 1: \text { int } \quad \Gamma \vdash e 2: \text { int }}{\Gamma \vdash e 1+e 2: \text { int }}
$$

Type Inference

- There wasn't a single point in the derivation where we had to look at the type labels in order to know what rule to apply!
- we could have written the derivation without the labels
- The labels helped us determine the actual types for all the τ s in the typing rules.
- we could have figured these out even without the labels
- this is the key idea behind type inference!

Type Inference Strategy 1

- 1. Use the typing rules to define constraints on the possible types of expressions
- 2. Solve the resulting constraint system

Deducing Types

$$
\text { twice } f x=f(f x)
$$

What is the most "general type" for twice?

1. Assign types to every subexpression

$$
\begin{aligned}
& \mathbf{x}: \text { : to f : : to } \\
& \text { f } x:=t 2 \quad f(f x):: t 3 \\
& \Rightarrow \text { twice : : to }->\text { to }->\text { to }
\end{aligned}
$$

2. Set up the constraints

$$
\begin{array}{ll}
t 1=t 0->t 2 & \text { because of }(f x) \\
t 1=t 2->t 3 & \text { because of } f(f x)
\end{array}
$$

3. Resolve the constraints
to $->$ t2 $=t 2->t 3$
$\Rightarrow t 0=t 2$ and $t 2=t 3 \Rightarrow t 0=t 2=t 3$
\Rightarrow twice : : (to -> to) $->$ to $->$ to

The language of Equality Constraints

- Consider the following Language of Constraints

$$
C::=\tau_{1}=\tau_{2}|C \wedge C| \exists \tau . C
$$

- Constraints in this language have a lot of good properties
- Nice and compositional
- Linear time solution algorithm

Building Constraints from Typing Rules

- Notation
\llbracket udgment $\rrbracket=$ Constraints
- The constraints on the right ensure that the judgment on the left holds
- This mapping is defined recursively.
- Base cases

$$
\llbracket \Gamma \vdash x: \tau \rrbracket=\Gamma(x)=\tau \quad \llbracket \Gamma \vdash N: \tau \rrbracket=\text { int }=\tau
$$

- Inductive Cases

$$
\begin{gathered}
\llbracket \Gamma \vdash e_{1} e_{2}: \tau \rrbracket=\exists \mathrm{a}\left(\llbracket \Gamma \vdash \mathrm{e}_{1}: \mathrm{a} \rightarrow \tau \rrbracket \wedge \llbracket \Gamma \vdash \mathrm{e}_{2}: \mathrm{a} \rrbracket\right) \\
\llbracket \Gamma \vdash \lambda x \cdot e: \tau \rrbracket=\exists \mathrm{a}_{1} \mathrm{a}_{2} \cdot\left(\llbracket \Gamma ; \mathrm{x}: \mathrm{a}_{1} \vdash \mathrm{e}: \mathrm{a}_{2} \rrbracket \wedge \tau=\mathrm{a}_{1} \rightarrow \mathrm{a}_{2}\right) \\
\llbracket \Gamma \vdash e_{1}+e_{2}: \tau \rrbracket=\llbracket \Gamma \vdash e_{1}: \mathrm{int} \rrbracket \wedge \llbracket \Gamma \vdash e_{2}: \mathrm{int} \rrbracket \wedge \tau=\mathrm{int}
\end{gathered}
$$

Back to our example

$$
(\lambda f . f 5)(\lambda x . x+1)
$$

$$
\begin{aligned}
& \llbracket \Gamma \vdash x: \tau \rrbracket=\Gamma(x)=\tau \\
& \llbracket \Gamma \vdash N: \tau \rrbracket=\text { int }=\tau
\end{aligned}
$$

$$
\llbracket \Gamma \vdash e_{1} e_{2}: \tau \rrbracket=\exists \mathrm{a}\left(\llbracket\left\ulcorner\vdash \mathrm{e}_{1}: \mathrm{a} \rightarrow \tau \rrbracket \wedge \llbracket \Gamma \vdash \mathrm{e}_{2}: \mathrm{a} \rrbracket\right)\right.
$$

$$
\llbracket \Gamma \vdash \lambda x . e: \tau \rrbracket=\exists \mathrm{a}_{1} \mathrm{a}_{2} \cdot\left(\llbracket \Gamma ; \mathrm{x}: \mathrm{a}_{1} \vdash \mathrm{e}: \mathrm{a}_{2} \rrbracket \wedge \tau=\mathrm{a}_{1} \rightarrow \mathrm{a}_{2}\right)
$$

$$
\llbracket\left\ulcorner\vdash e_{1}+e_{2}: \tau \rrbracket=\llbracket \Gamma \vdash e_{1}: \operatorname{int} \rrbracket \wedge \llbracket \Gamma \vdash e_{2}: i n t \rrbracket \wedge \tau=\mathrm{int}\right.
$$

Equality and Unification

- What does it mean for two types τ_{a} and τ_{b} to be equal?
- Structural Equality

$$
\begin{array}{ll}
\text { Suppose } & \tau_{\mathrm{a}}=\tau_{1}->\tau_{2} \\
\text { Is } \tau_{\mathrm{a}}=\tau_{\mathrm{b}} \text { ? } & \tau_{\mathrm{b}}=\tau_{3}->\tau_{4}
\end{array}
$$

$$
\text { iff } \tau_{1}=\tau_{3} \text { and } \tau_{2}=\tau_{4}
$$

- Can two types be made equal by choosing appropriate substitutions for their type variables?
- Robinson's unification algorithm

Suppose $\quad \tau_{\mathrm{a}}=\mathrm{t}_{1}->$ Bool

$$
\tau_{\mathrm{b}}=\text { Int }->\mathrm{t}_{2}
$$

Are τ_{a} and τ_{b} unifiable ?

$$
\text { if } \mathrm{t}_{1}=\text { Int and } \mathrm{t}_{2}=\mathrm{Bool}
$$

Suppose $\quad \tau_{\mathrm{a}}=\mathrm{t}_{1}->$ Bool

$$
\tau_{b}=\text { Int -> Int }
$$

Are τ_{a} and τ_{b} unifiable ?

Simple Type Substitutions needed to define type unification

```
Types
\begin{tabular}{rll}
\(\tau::=1\) & base types (Int, Bool ..) \\
\(|\)\begin{tabular}{ll}
t & type variables \\
\(\mid\) & \(\tau_{1}->\tau_{2}\)
\end{tabular} & Function types
\end{tabular}
```

A substitution is a map

$$
\begin{aligned}
& S: \text { Type Variables } \rightarrow \text { Types } \\
& S=\left[\tau_{1} / t_{1}, \ldots, \tau_{n} / t_{n}\right] \\
& \tau^{\prime}=S \tau \\
& \tau^{\prime} \text { is a Substitution Instance of } \tau
\end{aligned}
$$

Example:

$$
\begin{aligned}
& S=\left[(t->\text { Bool }) / t_{1}\right] \\
& S\left(t_{1}->t_{1}\right)=[(t->\text { Bool })->(t->\text { Bool })
\end{aligned}
$$

?

Substitutions can be composed, i.e., $\mathrm{S}_{2} \mathrm{~S}_{1}$
Example:

$$
\begin{aligned}
& \mathrm{S}_{1}=\left[(\mathrm{t}->\text { Bool }) / \mathrm{t}_{1}\right] ; \mathrm{S}_{2}=[\text { Int } / \mathrm{t}] \\
& \mathrm{S}_{2} \mathrm{~S}_{1}\left(\mathrm{t}_{1}->\mathrm{t}_{1}\right) \begin{array}{l}
=\mathrm{S}_{2}((\mathrm{t}->\text { Bool })->(\mathrm{t}->\text { Bool })) ? \\
\\
=(\text { Int }->\text { Bool })->(\text { Int }->\text { Bool })
\end{array}
\end{aligned}
$$

Unification

An essential subroutine for type inference
Unify $\left(\tau_{1}, \tau_{2}\right)$ tries to unify τ_{1} and τ_{2} and returns a substitution if successful

```
def Unify \(\left(\tau_{1}, \tau_{2}\right)=\)
        case ( \(\tau_{1}, \tau_{2}\) ) of
            \(\left(\tau_{1}, \mathrm{t}_{2}\right)=\left[\tau_{1} / \mathrm{t}_{2}\right]\) provided \(\mathrm{t}_{2} \notin \mathrm{FV}\left(\tau_{1}\right)\)
            \(\left(\mathrm{t}_{1}, \tau_{2}\right)=\left[\tau_{2} / \mathrm{t}_{1}\right]\) provided \(\mathrm{t}_{1} \notin \mathrm{FV}\left(\tau_{2}\right)\)
            \(\left(\mathrm{l}_{1}, \mathrm{l}_{2}\right)=\) if \(\left(\right.\) eq? \(\left.\mathrm{l}_{1} \mathrm{l}_{2}\right)\) then [ ]
                                    else fail
        \(\left(\tau_{11}->\tau_{12}, \tau_{21}->\tau_{22}\right)\)
    let \(S_{1}=\operatorname{Unify}\left(\tau_{11}, \tau_{21}\right)\)
                            \(S_{2}=\operatorname{Unify}\left(S_{1}\left(\tau_{12}\right), S_{1}\left(\tau_{22}\right)\right)\)
                            in \(\mathrm{S}_{2} \mathrm{~S}_{1}\)
    otherwise \(=\) fail
Does the order matter?

\section*{Type inference strategy 2}
- Like strategy 1 , but we solve the constraints as we see them
- Build the substitution map incrementally

\section*{Simple Inference Algorithm}
\(\mathrm{W}(\mathrm{TE}, \mathrm{e})\) returns \((\mathrm{S}, \tau)\) such that \(\mathrm{S}(\mathrm{TE}) \vdash \mathrm{e}: \tau\)
This is just \(\Gamma\) (it's hard to write \(\Gamma\) in code)
The type environment TE records the most general type of each identifier while the substitution \(S\) records the changes in the type variables


\section*{Simple Inference Algorithm (cont-1)}

Def W(TE, e) =
Case e of

u's represent new type variables
\[
\left.\begin{array}{l}
\llbracket \Gamma \vdash \lambda x . e: \tau \rrbracket=\exists \mathrm{a}_{1} \mathrm{a}_{2} \cdot\left(\llbracket \Gamma ; \mathrm{x}: \mathrm{a}_{1} \vdash \mathrm{e}: \mathrm{a}_{2} \rrbracket \wedge \tau=\mathrm{a}_{1} \rightarrow \mathrm{a}_{2}\right) \\
\lambda \mathrm{l} . \mathrm{e} \quad \\
=\operatorname{let}\left(\mathrm{S}_{1}, \tau_{2}\right)=\mathrm{W}(\mathrm{TE}+\{\mathrm{x}: \mathrm{u}\}, \mathrm{e}) \\
\\
\text { in }(,
\end{array}\right)
\]

\section*{Simple Inference Algorithm (cont-1)}
```

Def W(TE, e) =
Case e of
$\mathrm{c}=(\{ \}$, Typeof(c))
$x \quad=$ if $(x \notin \operatorname{Dom}(T E))$ then Fail
else let $\tau=\mathrm{TE}(\mathrm{x})$;
in (\{\}, τ)
$\lambda x . \mathrm{e}=$ let $\left(\mathrm{S}_{1}, \tau_{1}\right)=\mathrm{W}(\mathrm{TE}+\{\mathrm{x}: \mathrm{u}\}, \mathrm{e})$
in $\left(S_{1}, S_{1}(u)->\tau_{1}\right)$
$\left(\mathrm{e}_{1} \mathrm{e}_{2}\right)=\operatorname{let}\left(\mathrm{S}_{1}, \tau_{1}\right)=\mathrm{W}\left(\mathrm{TE}, \mathrm{e}_{1}\right)$;
$\left(\mathrm{S}_{2}, \tau_{2}\right)=\mathrm{W}\left(\mathrm{S}_{1}(\mathrm{TE}), \mathrm{e}_{2}\right)$;
$\mathrm{S}_{3}=\operatorname{Unify}\left(\mathrm{S}_{2}\left(\tau_{1}\right), \tau_{2}->\mathrm{u}\right)$;
in ($\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1}, \mathrm{~S}_{3}(\mathrm{u})$)
let $\mathrm{x}=\mathrm{e}_{1}$ in e_{2}
$=\operatorname{let}\left(\mathrm{S}_{1}, \tau_{1}\right)=W\left(T E+\{\mathrm{x}: \mathrm{u}\}, \mathrm{e}_{1}\right)$;
$S_{2}=U \operatorname{Unify}\left(S_{1}(u), \tau_{1}\right) ;$
$\left(\mathrm{S}_{3}, \tau_{2}\right)=\mathrm{W}\left(\mathrm{S}_{2} \mathrm{~S}_{1}(\mathrm{TE})+\left\{\mathrm{x}: \tau_{1}\right\}, \mathrm{e}_{2}\right)$;
in $\left(S_{3} S_{2} S_{1}, \tau_{2}\right)$

```

\section*{Example}

\section*{Case e of}
\[
\begin{aligned}
& \lambda x . e=\operatorname{let}\left(\mathrm{S}_{1}, \tau_{1}\right)=\mathrm{W}(\mathrm{TE}+\{\mathrm{x}: \mathrm{u}\}, \mathrm{e}) \\
& \text { in }\left(\mathrm{S}_{1}, \mathrm{~S}_{1}(\mathrm{u})->\tau_{1}\right) \\
&\left(\mathrm{e}_{1} \mathrm{e}_{2}\right)= \operatorname{let}\left(\mathrm{S}_{1}, \tau_{1}\right)=\mathrm{W}\left(\mathrm{TE}, \mathrm{e}_{1}\right) ; \\
&\left(\mathrm{S}_{2}, \tau_{2}\right)=\mathrm{W}\left(\mathrm{~S}_{1}(\mathrm{TE}), \mathrm{e}_{2}\right) ; \\
& \mathrm{S}_{3}=U \operatorname{Unify}\left(\mathrm{~S}_{2}\left(\tau_{1}\right), \tau_{2}->\mathrm{u}\right) ;
\end{aligned}
\]
\[
\begin{gathered}
W\left(\left\{f: u_{0}\right\}, f\right)=\left(\emptyset, u_{0}\right) \quad W\left(\left\{f: u_{0}\right\}, 5\right)=(\emptyset, \text { Int }) \\
\text { Unify }\left(u_{0}, \text { Int } \rightarrow u_{1}\right)=
\end{gathered}
\]
\[
W\left(\left\{f: u_{0}\right\}, f 5\right)=
\]
\[
W(\emptyset,(\lambda f . f 5))=
\]
\[
W(\emptyset,(\lambda f . f 5)(\lambda x . x))
\]
\(W\left(\left\{f: u_{0}\right\}, f\right)=\left(\emptyset, u_{0}\right) \quad W\left(\left\{f: u_{0}\right\}, 5\right)=(\emptyset\), Int \()\)
    \(\operatorname{Unify}\left(u_{0}\right.\), Int \(\left.\rightarrow u_{1}\right)=\left[\left(\operatorname{Int} \rightarrow u_{1}\right) / u_{0}\right]\)
\(W\left(\left\{f: u_{0}\right\}, f 5\right)=\)
\(w(\emptyset,(\lambda f . f 5))=\)
\(W(\emptyset,(\lambda f . f 5)(\lambda x . x))\)

\section*{Example}

\section*{Case e of}
\[
\begin{aligned}
\lambda x . e & =\operatorname{let}\left(\mathrm{S}_{1}, \tau_{1}\right)=\mathrm{W}(\mathrm{TE}+\{\mathrm{x}: \mathrm{u}\}, \mathrm{e}) \\
& \text { in }\left(\mathrm{S}_{1}, \mathrm{~S}_{1}(\mathrm{u})->\tau_{1}\right) \\
\left(\mathrm{e}_{1} \mathrm{e}_{2}\right)= & \operatorname{let}\left(\mathrm{S}_{1}, \tau_{1}\right)=\mathrm{W}\left(\mathrm{TE}, \mathrm{e}_{1}\right) ; \\
& \left(\mathrm{S}_{2}, \tau_{2}\right)=\mathrm{W}\left(\mathrm{~S}_{1}(\mathrm{TE}), \mathrm{e}_{2}\right) ; \\
& \text { in }\left(\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1}, \mathrm{Unify}_{3}\left(\mathrm{u}\left(\mathrm{~S}_{2}\left(\tau_{1}\right)\right), \tau_{2}->\mathrm{u}\right) ;\right.
\end{aligned}
\]
\[
\begin{gathered}
W\left(\left\{f: u_{0}\right\}, f\right)=\left(\emptyset, u_{0}\right) \quad W\left(\left\{f: u_{0}\right\}, 5\right)=(\emptyset, \text { Int }) \\
\text { Unify }\left(u_{0}, \text { Int } \rightarrow u_{1}\right)=\left[\left(\text { Int } \rightarrow u_{1}\right) / u_{0}\right] \\
W\left(\left\{f: u_{0}\right\}, f 5\right)=\left(\left[\text { Int } \rightarrow u_{1} / u_{0}\right], u_{1}\right) \\
W(\emptyset,(\lambda f . f 5))=\left(\left[\left(\text { Int } \rightarrow u_{1}\right) / u_{0}\right],\left(\text { Int } \rightarrow u_{1}\right) \rightarrow u_{1}\right) \\
W(\emptyset,(\lambda f . f 5)(\lambda x . x))
\end{gathered}
\]

\section*{Example}

\section*{Case e of}
\[
\begin{aligned}
\lambda \mathrm{x} . \mathrm{e}= & \text { let }\left(\mathrm{S}_{1}, \tau_{1}\right)=\mathrm{W}(\mathrm{TE}+\{\mathrm{x}: \mathrm{u}\}, \mathrm{e}) \\
& \text { in }\left(\mathrm{S}_{1}, \mathrm{~S}_{1}(\mathrm{u})->\tau_{1}\right) \\
\left(\mathrm{e}_{1} \mathrm{e}_{2}\right)= & \text { let }\left(\mathrm{S}_{1}, \tau_{1}\right)=\mathrm{W}\left(\mathrm{TE}, \mathrm{e}_{1}\right) ; \\
& \left(\mathrm{S}_{2}, \tau_{2}\right)=\mathrm{W}\left(\mathrm{~S}_{1}(\mathrm{TE}), \mathrm{e}_{2}\right) ; \\
& \text { in }\left(\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1}, \mathrm{~S}_{3}\left(\mathrm{Uify}\left(\mathrm{~S}_{2}\left(\tau_{1}\right)\right), \tau_{2}->\mathrm{u}\right) ;\right.
\end{aligned}
\]
\[
\begin{aligned}
& W(\emptyset,(\lambda f . f 5))=\left(\left[\left(\operatorname{Int} \rightarrow u_{1}\right) / u_{0}\right],\left(\text { Int } \rightarrow u_{1}\right) \rightarrow u_{1}\right) \\
& W(\emptyset,(\lambda x . x))=\left(\emptyset, u_{3} \rightarrow u_{3}\right) \\
& \quad U n i f y\left(\left(I n t \rightarrow u_{1}\right) \rightarrow u_{1},\left(u_{3} \rightarrow u_{3}\right) \rightarrow u_{4}\right)=
\end{aligned}
\]
\[
W(\emptyset,(\lambda f . f 5)(\lambda x . x))
\]
in \(\mathrm{S}_{2} \mathrm{~S}_{1}\)
\(\operatorname{Unify}\left(\left(\operatorname{Int} \rightarrow u_{1}\right),\left(u_{3} \rightarrow u_{3}\right)\right)=\left[\operatorname{Int} / u_{3} ; \operatorname{Int} / u_{1}\right]\)
\(\operatorname{Unify}\left(\operatorname{Int}, u_{4}\right)=\left[\right.\) Int \(\left./ u_{4}\right]\)
\(\operatorname{Unify}\left(\left(\operatorname{Int} \rightarrow u_{1}\right) \rightarrow u_{1},\left(u_{3} \rightarrow u_{3}\right) \rightarrow u_{4}\right)=\left[\operatorname{Int} / u_{3} ; \operatorname{Int} / u_{1} ; \operatorname{Int} / u_{4}\right]\) \(W(\emptyset,(\lambda f . f 5)(\lambda x . x))\)

\section*{Example}

\section*{Case e of}
\[
\begin{aligned}
& \lambda x . e=\operatorname{let}\left(\mathrm{S}_{1}, \tau_{1}\right)=\mathrm{W}(\mathrm{TE}+\{\mathrm{x}: \mathrm{u}\}, \mathrm{e}) \\
& \text { in }\left(\mathrm{S}_{1}, \mathrm{~S}_{1}(\mathrm{u})->\tau_{1}\right) \\
&\left(\mathrm{e}_{1} \mathrm{e}_{2}\right)= \text { let }\left(\mathrm{S}_{1}, \tau_{1}\right)=\mathrm{W}\left(\mathrm{TE}, \mathrm{e}_{1}\right) ; \\
&\left(\mathrm{S}_{2}, \tau_{2}\right)=\mathrm{W}\left(\mathrm{~S}_{1}(\mathrm{TE}), \mathrm{e}_{2}\right) ; \\
& \mathrm{S}_{3}=U \operatorname{Uify}\left(\mathrm{~S}_{2}\left(\tau_{1}\right), \tau_{2}->\mathrm{u}\right) ;
\end{aligned}
\]
\[
\begin{aligned}
& W(\emptyset,(\lambda f . f 5))=\left(\left[\left(\operatorname{Int} \rightarrow u_{1}\right) / u_{0}\right],\left(\operatorname{Int} \rightarrow u_{1}\right) \rightarrow u_{1}\right) \\
& W(\emptyset,(\lambda x . x))=\left(\emptyset, u_{3} \rightarrow u_{3}\right) \\
& \text { Unify }\left(\left(\operatorname{Int} \rightarrow u_{1}\right) \rightarrow u_{1},\left(u_{3} \rightarrow u_{3}\right) \rightarrow u_{4}\right)=\left[\text { Int } / u_{3} ; \text { Int } / u_{1} ; \text { Int } / u_{4}\right] \\
& \quad W(\emptyset,(\lambda f . f 5)(\lambda x . x))=\left(\left[\left(\operatorname{Int} \rightarrow u_{1}\right) / u_{0} ; \text { Int } / u_{3} ; \text { Int } / u_{1} ; \text { Int } / u_{4}\right], \text { Int }\right)
\end{aligned}
\]

\section*{What about Let?}
- let \(x=e_{1}\) in \(e_{2}\)
- Typing rule

This is Hindley Milner without polymorphism
\(-\frac{\Gamma ; x: \tau^{\prime} \vdash e_{1}: \tau^{\prime} \quad \Gamma ; x: \tau^{\prime} \vdash e_{2}: \tau}{\Gamma \vdash \text { let } x=e_{1} \text { in } e_{2}: \tau}\)
- Constraints
- \(\llbracket \Gamma \vdash\) let \(x=e_{1}\) in \(e_{2}: \tau \rrbracket=\)
\(\exists \tau^{\prime}, \quad \llbracket \Gamma ; x: \tau^{\prime} \vdash e_{1}: \tau^{\prime} \rrbracket \wedge \llbracket \Gamma ; x: \tau^{\prime} \vdash e_{2}: \tau \rrbracket\)
- Algorithm
\[
\begin{aligned}
& \text { Case Exp }=\text { let } \mathrm{x}=\mathrm{e}_{1} \text { in } \mathrm{e}_{2} \\
& =>\text { let }\left(\mathrm{S}_{1}, \tau_{1}\right)=\mathrm{W}\left(\mathrm{TE}+\{\mathrm{x}: \mathrm{u}\}, \mathrm{e}_{1}\right) ; \\
& \mathrm{S}_{2}=\operatorname{Unify}\left(\mathrm{S}_{1}(\mathrm{u}), \tau_{1}\right) ; \\
& \quad\left(\mathrm{S}_{3}, \tau_{2}\right) \\
& \text { in } \quad=\mathrm{W}\left(\mathrm{~S}_{2} \mathrm{~S}_{1}(\mathrm{TE})+\left\{\mathrm{S}: \mathrm{S}_{2}\right\}, \mathrm{S}_{1}, \tau_{2}\right) ;
\end{aligned}
\]

\section*{Polymorphism}

\section*{Some observations}
- A type system restricts the class of programs that are considered "legal"
- It is possible a term in the untyped \(\lambda\) calculus may be reducible to a value but may not be typeable in a particular type system
\[
\begin{array}{|ll|}
\hline \text { let } & \\
\text { in } & \text { id }=\lambda x . x \\
& \ldots(\text { id True }) \ldots(\text { id } 1) \ldots \\
\hline
\end{array}
\]

This term is not typeable in the simple type system we have discussed so far. However, it is typeable in the Hindley-Milner system

\section*{Explicit polymorphism}
- You've seen this before
```

public interface List<E>{
void add(E x);
E get();

```
```

List<String> ls = ...
ls.add("Hello");
String hello = ls.get(0);

```
- How do we formalize this?
\[
\frac{\Gamma \vdash e: \tau}{\Gamma \vdash \Lambda t . e: \forall t . \tau}
\]
\[
\frac{\Gamma \vdash e: \forall t . \tau^{\prime}}{\Gamma \vdash e[\tau]: \tau^{\prime}[\tau / t]}
\]
- Example
\[
\begin{aligned}
& i d=\Lambda T \cdot \lambda x: T \cdot x \\
& i d[\text { int }] 5
\end{aligned}
\]

\section*{Different Styles of Polymorphism}
- Impredicative Polymorphism
\[
\begin{aligned}
& \tau::=b\left|\tau_{1} \rightarrow \tau_{2}\right| T \mid \forall T . \tau \\
& \mathrm{e}::=x|\lambda x: \tau . e| e_{1} e_{2}|\Lambda \mathrm{~T} . \mathrm{e}| \mathrm{e}[\tau]
\end{aligned}
\]
- Very powerful
- Although you still can't express recursion
- Type inference is undecidable!

\section*{Different Styles of Polymorphism}
- Predicative Polymorphism
\[
\begin{aligned}
& \tau::=b\left|\tau_{1} \rightarrow \tau_{2}\right| T \\
& \sigma::=\tau|\forall T . \sigma| \sigma_{1} \rightarrow \sigma_{2} \\
& \mathrm{e}::=x|\lambda x: \sigma . e| e_{1} e_{2}|\Lambda \mathrm{~T} . \mathrm{e}| \mathrm{e}[\tau]
\end{aligned}
\]
- Still very powerful
- But you can no longer instantiate with a polymorphic type
- Type inference is still undecidable!

\section*{Different Styles of Polymorphism}
- Prenex Predicative Polymorphism
\[
\begin{aligned}
& \tau::=b\left|\tau_{1} \rightarrow \tau_{2}\right| T \\
& \sigma::=\tau \mid \forall T . \sigma \\
& \mathrm{e}::=x|\lambda x: \tau . e| e_{1} e_{2}|\Lambda \mathrm{~T} . \mathrm{e}| \mathrm{e}[\tau]
\end{aligned}
\]
- Now we have decidable type inference
- But polymorphism is now very limited
- We can't pass polymorphic functions as arguments!!
- \((\lambda s: \forall T . \tau \ldots s[\) int \(] x \ldots s[\) bool \(] x)(\Lambda T\). code for sort)

\section*{Let polymorphism}
- Introduce let \(\mathrm{x}=\mathrm{e} 1\) in e2
- Just like saying ( \(\lambda x . e 2\) )e1
- Except x can be polymorphic
- Good engineering compromise
- Enhance expressiveness
- Preserve decidability
- This is the Hindley Milner type system

\section*{Type inference with polymorphism}

\section*{Polymorphic Types}
\[
\begin{aligned}
& \text { let } \\
& \text { in }
\end{aligned} \text { id }=\lambda x . x
\]

Constraints:
\[
\begin{array}{lll}
\hline \text { id }:: t_{1} & -->t_{1} \\
\text { id }:: \text { Int } & -->t_{2} \\
\text { id }:: \text { Bool } & ->t_{3}
\end{array}
\]

Solution: Generalize the type variable
\[
\text { id }:: \forall \mathrm{t}_{1} . \mathrm{t}_{1}-->\mathrm{t}_{1}
\]

Different uses of a generalized type variable may be instantiated differently
\(i d_{2}\) : Bool --> Bool
\(\mathrm{id}_{1}\) : Int --> Int

\section*{A mini Language}
to study Hindley-Milner Types
\[
\begin{array}{rlr}
\text { Expressions } & \\
\mathrm{E}::=\mathrm{c} & & \text { constant } \\
& \mid \mathrm{x} & \\
& & \text { variable } \\
& \lambda \times . \mathrm{E} & \text { abstraction } \\
& \left(\mathrm{E}_{1} \mathrm{E}_{2}\right) & \\
& \text { let } \mathrm{x}=\mathrm{E}_{1} \text { in } \mathrm{E}_{2} & \\
\text { application }
\end{array}
\]
- There are no types in the syntax of the language!
- The type of each subexpression is derived by the Hindley-Milner type inference algorithm.

\section*{A Formal Type System}
Types
\[
\begin{aligned}
\tau & :: \\
& \left\lvert\, \begin{array}{l}
\mid \\
\\
\\
\\
\\
\tau_{1}->\tau_{2}
\end{array}\right.
\end{aligned}
\]
base types
type variables
Function types

\section*{Type Schemes}
\[
\begin{aligned}
& \sigma::=\tau \\
& \mid \forall t . ~ \\
& \hline
\end{aligned}
\]

\section*{Type Environments}
TE ::= Identifiers \(\rightarrow\) Type Schemes

Note, all the \(\forall\) 's occur in the beginning of a type scheme, i.e., a type \(\tau\) cannot contain a type scheme \(\sigma\)

\section*{Instantiations}
\[
\sigma=\forall \mathrm{t}_{1} \ldots \mathrm{t}_{\mathrm{n}}, \tau
\]
- Type scheme \(\sigma\) can be instantiated into a type \(\tau^{\prime}\) by substituting types for the bound variables of \(\sigma\), i.e.,
\[
\tau^{\prime}=S \tau \quad \text { for some } S \text { s.t. } \operatorname{Dom}(S) \subseteq B V(\sigma)
\]
- \(\tau^{\prime}\) is said to be an instance of \(\sigma\left(\sigma>\tau^{\prime}\right)\)
- \(\tau^{\prime}\) is said to be a generic instance of \(\sigma\) when \(S\) maps variables to new variables.

Example:
\[
\sigma=\forall t_{1} \cdot \mathrm{t}_{1}->\mathrm{t}_{2}
\]
\(t_{3}->t_{2}\) is a generic instance of \(\sigma\)
Int \(->t_{2}\) is a non generic instance of \(\sigma\)

\section*{Generalization aka Closing}
\[
\begin{aligned}
\operatorname{Gen}(T E, \tau)= & \forall \\
& \mathrm{t}_{1} \ldots \mathrm{t}_{\mathrm{n}} \cdot \tau \\
& \text { where }\left\{\mathrm{t}_{1} \ldots \mathrm{t}_{\mathrm{n}}\right\}=\mathrm{FV}(\tau)-\mathrm{FV}(\mathrm{TE})
\end{aligned}
\]
- Generalization introduces polymorphism
- Quantify type variables that are free in \(\tau\) but not free in the type environment (TE)
- Captures the notion of new type variables of \(\tau\)

\section*{HM Type Inference Rules}
(App)
\(\frac{\Gamma \vdash e_{1}: \tau \rightarrow \tau^{\prime} \quad \Gamma \vdash e_{2}: \tau}{\Gamma \vdash\left(e_{1} e_{2}\right): \tau \prime}\)
Remember, \(\tau\) stands for a monotype, \(\sigma\) for a polymorphic type
(Abs)
(Var)
(Const)
(Let)
\begin{tabular}{ll}
\(\frac{\Gamma ;\{x: \tau\} \vdash e: \tau \prime}{\Gamma \vdash \lambda x . e: \tau \rightarrow \tau \prime}\) \\
\(\frac{(x: \sigma) \in \Gamma \sigma \geq \tau}{\Gamma \vdash x: \tau}\) & \begin{tabular}{l}
\(x\) can be considered of type \(\tau\) as \\
long as its type as specified in the \\
environment can be specialized to \\
\(\tau\) (i.e. \(\tau\) is an instance of \(\sigma\) )
\end{tabular} \\
\(\frac{\text { typeof }(c) \geq \tau}{\Gamma \vdash c: \tau}\) & \begin{tabular}{l} 
Note: \(x\) has a different type in \(e_{1}\) \\
than in \(e_{2}\). In \(e_{1}, x\) is not a \\
polymorphic type, but in \(e_{2}\) it gets \\
generalized into one.
\end{tabular}
\end{tabular}
\(\frac{\Gamma ;\{x: \tau\} \vdash e_{1}: \tau \quad \Gamma ;\{x: G e n(\Gamma, \tau)\} \vdash e_{2}: \tau \prime}{\Gamma \vdash\left(\operatorname{let} x=e_{1} \text { in } e_{2}\right): \tau \prime}\)

\section*{HM Inference Algorithm}
\[
\begin{aligned}
& \text { Def W(TE, e) = Case e of } \\
& \mathrm{c} \quad=(\{ \}, \operatorname{Typeof}(\mathrm{c})) \\
& \mathrm{x} \quad=\text { if }(\mathrm{x} \notin \operatorname{Dom}(\mathrm{TE})) \text { then Fail } \\
& \text { else let } \forall \mathrm{t}_{1} \ldots \mathrm{t}_{\mathrm{n}} . \tau=\mathrm{TE}(\mathrm{x}) \text {; } \\
& \text { in ( }\left\},\left[\mathrm{u}_{\mathrm{i}} / \mathrm{t}_{\mathrm{i}}\right] \tau\right) \\
& \text { גx.e } \quad=\text { let }\left(S_{1}, \tau_{1}\right)=W(T E+\{x: u\}, e) \text {; } \\
& \text { in }\left(\mathrm{S}_{1}, \mathrm{~S}_{1}(\mathrm{u})->\tau_{1}\right) \\
& \left(\mathrm{e}_{1} \mathrm{e}_{2}\right)=\operatorname{let}\left(\mathrm{S}_{1}, \tau_{1}\right)=\mathrm{W}\left(T E, \mathrm{e}_{1}\right) \text {; } \\
& \left(\mathrm{S}_{2}, \tau_{2}\right)=\mathrm{W}\left(\mathrm{~S}_{1}(\mathrm{TE}), \mathrm{e}_{2}\right) \text {; } \\
& \mathrm{S}_{3}=\operatorname{Unify}\left(\mathrm{S}_{2}\left(\tau_{1}\right), \tau_{2}->\mathrm{u}\right) \text {; } \\
& \text { in }\left(\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1}, \mathrm{~S}_{3}(\mathrm{u})\right. \text { ) } \\
& \text { let } \mathrm{x}=\mathrm{e}_{1} \text { in } \mathrm{e}_{2} \\
& =\operatorname{let}\left(\mathrm{S}_{1}, \tau_{1}\right)=\mathrm{W}\left(\mathrm{TE}+\{\mathrm{x}: \mathrm{u}\}, \mathrm{e}_{1}\right) \text {; } \\
& \mathrm{S}_{2}=\operatorname{Unify}\left(\mathrm{S}_{1}(\mathrm{u}), \tau_{1}\right) \text {; } \\
& \sigma \quad=\operatorname{Gen}\left(\mathrm{S}_{2} \mathrm{~S}_{1}(\mathrm{TE}), \mathrm{S}_{2}\left(\tau_{1}\right)\right) \text {; } \\
& \left(\mathrm{S}_{3}, \tau_{2}\right)=\mathrm{W}\left(\mathrm{~S}_{2} \mathrm{~S}_{1}(\mathrm{TE})+\{\mathrm{x}: \sigma\}, \mathrm{e}_{2}\right) \text {; } \\
& \text { in }\left(S_{3} S_{2} S_{1}, \tau_{2}\right)
\end{aligned}
\]

\section*{Hindley-Milner: Example}

\[
\begin{aligned}
& W(\varnothing, A)=\left([], u_{1}->\left(u_{1}, u_{1}\right)\right) \\
& W\left(\left\{x: u_{1}\right\}, B\right)=\left([],\left(u_{1}, u_{1}\right)\right) \\
& W\left(\left\{x: u_{1}, f: u_{2}\right\}, \lambda y \cdot x\right)=\left([], u_{3}->u_{1}\right) \\
& \quad W\left(\left\{x: u_{1}, f: u_{2}, y: u_{3}\right\}, x\right)=\left([], u_{1}\right)
\end{aligned}
\]
\[
\operatorname{Unify}\left(u_{2}, u_{3}->u_{1}\right)=\left[\left(u_{3}->u_{1}\right) / u_{2}\right]
\]
\[
\operatorname{Gen}\left(\left\{x: u_{1}\right\}, u_{3}->u_{1}\right)=\forall u_{3} \cdot u_{3}->u_{1}
\]
\[
\mathrm{TE}=\left\{\mathrm{x}: \mathrm{u}_{1}, \mathrm{f}: \forall \mathrm{u}_{3} \cdot \mathrm{u}_{3}->\mathrm{u}_{1}\right\}
\]
\[
W(T E,(f 1))=\left([], u_{1}\right)
\]
\[
\mathrm{W}(\mathrm{TE}, \mathrm{f})=\left([], \mathrm{u}_{4}->\mathrm{u}_{1}\right)
\]
\[
W(T E, 1)=([], \text { Int })
\]
\[
\text { Unify }\left(\mathrm{u}_{4}->\mathrm{u}_{1}, \text { Int } \rightarrow \mathrm{u}_{5}\right)=\left[\text { Int } / \mathrm{u}_{4}, \mathrm{u}_{1} / \mathrm{u}_{5}\right]
\]

\section*{Important Observations}
- Do not generalize over type variables used elsewhere
- Let is the only way of defining polymorphic constructs
- Generalize the types of let-bound identifiers only after processing their definitions

\section*{Properties of HM Type Inference}
- It is sound with respect to the type system. An inferred type is verifiable.
- It generates most general types of expressions. Any verifiable type is inferred.
- Complexity

PSPACE-Hard
Nested let blocks

\section*{Extensions}
- Type Declarations

Sanity check; can relax restrictions
- Incremental Type checking

The whole program is not given at the same time, sound inferencing when types of some functions are not known
- Typing references to mutable objects Hindley-Milner system is unsound for a language with refs (mutable locations)
- Overloading Resolution

\section*{HM Limitations:} \(\lambda\)-bound vs Let-bound Variables

Only let-bound identifiers can be instantiated differently.


\section*{Puzzle: Another set of Inference rules}


MIT OpenCourseWare
http://ocw.mit.edu
6.820 Fundamentals of Program Analysis

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.```

