
 L08-1

Type Classes and Subtyping

Armando Solar-Lezama

Computer Science and Artificial Intelligence Laboratory

MIT

October 5, 2015

With content by Arvind and Adam Chlipala.
Used with permission.

October 5, 2015

 L08-2

Hindley-Milner gives us generic
functions

• Can generalize a type if the function
makes no assumptions about the type:

 const ::  a b. a -> b -> a

 const x y = x

 apply ::  a b. (a -> b) -> a -> b

 apply f x = f x

• What do we do when we need to make
an assumption?

October 5, 2015

 L08-3

A simple sum function

-- List data type

data [x] = [] | x : [x]

sum n [] = n

sum n (x:xs) = sum (n + x) xs

• sum cannot be of type a -> [a] -> a,

we make use of the type (we need to
know how to add to objects in the list).

• Pass in the notion of plus?

October 5, 2015

 L08-4

Avoiding constraints: Passing in +

sum plus n [] = n

sum plus n (x:xs) = sum (plus n x) xs

• Now we can get have a polymorphic type
for sum

sum :: (a -> a -> a) ->

 a -> [a] -> a

• When we call sum we have to pass in the
appropriate function representing addition

October 5, 2015

 L08-5

Generalizing to other arithmetic
functions

October 5, 2015

• A large class of functions do arithmetic operations
(matrix multiply, FFT, Convolution, Linear
Programming, Matrix solvers):

• We can generalize, but we need +, -, *, /, …

• Create a Numeric “class” type:

data (Num a) = Num{

 (+) :: a -> a -> a

 (-) :: a -> a -> a

 (*) :: a -> a -> a

 (/) :: a -> a -> a

 fromInteger :: Integer -> a

}

 L08-6

Generalized Functions w/ “class”
types

matrixMul :: Num a -> Mat a -> Mat a -> Mat a

dft :: Num a -> Vec a -> Vec a -> Vec a

• All of the numeric aspects of the type has been isolated to
the Num type
– For each type, we built a num instance

– The same idea can encompass other concepts (Equality, Ordering,
Conversion to/from String)

• Issues: Dealing with passing in num objects is annoying:
– We have to be consistent in our passing of funcitons

– Defining Num for generic types (Mat a) requires we pass the correct
num a to a generator (num_mat :: Num a -> Num (Mat a))

– Nested objects may require a substantial number of “class” objects

October 5, 2015

Push “class” objects into type class

 L08-7

Type Classes

Type classes group together related functions
(e.g., +, -) that are overloaded over the same
types (e.g., Int, Float):

class Num a where

(==), (/=) :: a -> a -> Bool

(+), (-), (*) :: a -> a -> a

negate :: a -> a

...

instance Num Int where

 x == y = integer_eq x y

 x + y = integer_add x y

…

instance Num Float where ...

October 5, 2015

 L08-8

Type Class Hierarchy

class Eq a where

 (==), (/=) :: a -> a -> Bool

class (Eq a) => Ord a where

(<),(<=),(>=),(>) :: a -> a -> Bool

 max, min :: a -> a -> a

• Each type class corresponds to one
concept and class constraints give rise to
a natural hierarchy on classes

• Eq is a superclass of Ord:
– If type a is an instance of Ord, a is also an instance

of Eq

– Ord inherits the specification of (==), (/=) from Eq

October 5, 2015

 L08-9

Laws for a type class

• A type class often has laws associated
with it
– E.g., + in Num should be associate and

commutative

• These laws are not checked or ensured
by the compiler; the programmer has to
ensure that the implementation of each
instance correctly follows the law

October 5, 2015

more on this later

 L08-10

(Num a) as a predicate in type
defintions

• We can view type classes as predicates

• Deals with all the passing we had to do in our
data passing fashion
– The type implies which objects should be passed in

October 5, 2015

Type classes is merely a type discipline
which makes it easier to write a class of
programs; after type checking the compiler
de-sugars the language into pure -calculus

 L08-11

Subtyping

October 5, 2015

 L08-12

Related Reading

Chapter 15 of Pierce, “Subtyping”

 L08-13

Subtyping in Java: Primitive Types

void foo(int n) {

 float f = n;

 // ...and so on.

}

int ≤ float

 L08-14

interface List {

 List append(List);

}

class Nil implements List {

 Nil() { }

 List append(ls) { return ls; }

}

class Cons implements List {

 private int data;

 private List tail;

 Cons(int d, List t) { data = d; tail = t; }

 List append(ls) {

 return Cons(data, tail.append(ls));

 }

}

Nil ≤ List
Cons ≤ List

Subtyping in Java: Interfaces

 L08-15

class Cons implements List {

 /* … */

}

class LoggingCons extends Cons {

 private int numAppends;

 LoggingCons(int d, List t) {

 super(d, t);

 numAppends = 0;

 }

 List append(ls) {

 ++numAppends;

 return super.append(ls);

 }

 int howManyAppends() { return numAppends; }

}

LoggingCons ≤ Cons

Subtyping in Java: Inheritance

 L08-16

Subtyping as Graph Search

int

float Arrow from A to B to indicate
that B is a “direct” subtype of A

List

Nil Cons

LoggingCons

Q: How do we decide if A is a subtype of B?
A: Graph reachability! (Easy, right?)

We do need to think harder when the graph can be infinite.
(E.g., what about generics?)

 L08-17

Subtyping as a Formal Judgment

𝜏 ≤ 𝜏′′
𝜏 ≤ 𝜏′ 𝜏′ ≤ 𝜏′′

Transitivity: 𝜏 ≤ 𝜏 Reflexivity:

int ≤ float Primitive rule:

A ≤ B Inheritance:
class A extends B

A ≤ B Interfaces:
class A implements B

This style of subtyping is called nominal, because
the edges between user-defined types are all
declared explicitly, via the names of those types.

 L08-18

Assume we have some operator ⋅ ,
such that 𝜏 is a mathematical set that represents 𝜏.

[int] = ℤ
[float] = ℝ

What's a natural way to formulate subtyping here?

𝜏1 ≤ 𝜏2 iff 𝜏1 ? 𝜏2

What about cases like:
 struct s1 { int a; int b; }

 struct s2 { float b; }

 Is either of these a subtype of the other?

What is Subtyping, Really?

 L08-19

𝜏1 ≤ 𝜏2
if

Anywhere it is legal to use a 𝜏2,
it is also legal to use a 𝜏1.

A More Helpful Guiding Principle

 L08-20

Typing rule for subtypes

Γ ⊢ 𝑒: 𝜏′ 𝜏′ ≤ 𝜏

Γ ⊢ 𝑒 ∶ 𝜏

 L08-21

Sanity-Checking the Principle

int ≤ float Primitive rule:

✔Any integer N can be treated as N.0, with no loss of meaning.

float ≤ int Primitive rule:

✗E.g., “%” operator defined for int but not float.

int ≤ int → int
Primitive rule:

✗Can't call an int!

 L08-22

From Nominal to Structural

A structural subtyping system
includes rules that analyze the

structure of types, rather than just
using graph edges declared by

the user explicitly.

 L08-23

Pair Types

Consider types 𝜏1 × 𝜏2,
consisting of (immutable) pairs of a 𝜏1 and a 𝜏2.

What is a good subtyping rule for this feature?
Ask ourselves: What operations does it support?
 1. Pull out a 𝜏1.
 2. Pull out a 𝜏2.

𝜏1 ≤ 𝜏1
′
 𝜏2 ≤ 𝜏2

′

𝜏1× 𝜏2≤ 𝜏1
′ × 𝜏2

′

Jargon: The pair type constructor is covariant.

 L08-24

Consider types like { a1 : 𝜏1, …, aN : 𝜏N },
consisting of, for each i, a field ai of type 𝜏i.

What operations must we support?
 1. For any i, pull out a 𝜏i from ai.

{ai : 𝜏i} ≤ {ai : 𝜏'i}

∀i. 𝜏i ≤ 𝜏'i
Depth subtyping: Same field names,

possibly with
different types

Width subtyping:
{ai : 𝜏i} ≤ {a'j : 𝜏'j}

∀j. ∃i. ai = a'j ∧ 𝜏i = 𝜏'j
Field names
may be different

Record Types

 L08-25

Record Type Examples

{A : int, B : float} ≤ {A : float, B : float}

{ai : 𝜏i} ≤ {ai : 𝜏'i}

∀i. 𝜏i ≤ 𝜏'i
Depth:

Width:
{ai : 𝜏i} ≤ {a'j : 𝜏'j}

∀j. ∃i. ai = a'j ∧ 𝜏i = 𝜏'j

?
Yes!

{A : float, B : float} ≤ {A : int, B : float}
?

No!

{A : int, B : float} ≤ {A : float}
?

Yes!

 L08-26

Function Types

Consider types 𝜏1 → 𝜏2.

What operations must we support?
 1. Call with a 𝜏1to receive a 𝜏2 as output.

𝜏1 ≤ 𝜏'1 𝜏2 ≤ 𝜏'2
𝜏1 → 𝜏2 ≤ 𝜏'1 → 𝜏'2

Optimistic
covariant rule:

Counterexample: int → int ≤ float → int

(𝜆 x : int. x % 2) : int → int

Breaks when we call it with 1.23!

 L08-27

Consider types 𝜏1 → 𝜏2.

What operations must we support?
 1. Call with a 𝜏1 to receive a 𝜏2 as output.

𝜏'1 ≤ 𝜏1 𝜏2 ≤ 𝜏'2
𝜏1 → 𝜏2 ≤ 𝜏'1 → 𝜏'2

Swap order for
function domains!

The function arrow is contravariant in the domain
and covariant in the range!

Example: float → int ≤ int → int
Assume f : float → int
Build (𝜆 x. f(intToFloat(x))) : int → int

Function Types

 L08-28

Arrays

Consider types 𝜏[].

What operations must we support?
 1. Read a 𝜏 from some index.
 2. Write a 𝜏 to some index.

𝜏1 ≤ 𝜏2
𝜏1[] ≤ 𝜏2[]

Covariant rule:

Counterexample:

int[] x = new int[1];

float[] y = x; // Use subtyping here.

y[0] = 1.23;

int z = x[0]; // Not an int!

 L08-29

Consider types 𝜏[].

What operations must we support?
 1. Read a 𝜏 from some index.
 2. Write a 𝜏 to some index.

𝜏2 ≤ 𝜏1
𝜏1[] ≤ 𝜏2[]

Contravariant rule:

Counterexample:

float[] x = new float[1];

int[] y = x; // Use subtyping here.

x[0] = 1.23;

int z = y[0]; // Not an int!

Arrays

 L08-30

Consider types 𝜏[].

What operations must we support?
 1. Read a 𝜏 from some index.
 2. Write a 𝜏 to some index.

Correct rule: None at all!
 Only reflexivity applies to array types.

In other words, the array type constructor is invariant.

Java and many other “practical” languages use the
covariant rule for convenience.
Run-time type errors (exceptions) are possible!

Arrays

 L08-31

Subtyping Variance and
Generics/Polymorphism

List<𝜏1> ≤ List<𝜏2>
?

List and most other “data structures” will be
covariant.
There are reasonable uses for contravariant and
invariant generics, including mixing these modes
across multiple generic parameters.
Languages like OCaml and Scala allow generics to
be annotated with variance.

[Haskell doesn't have subtyping and avoids the
whole mess.]

MIT OpenCourseWare
http://ocw.mit.edu

6.820 Fundamentals of Program Analysis
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

