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Hindley-Milner gives us generic 
functions 

• Can generalize a type if the function 
makes no assumptions about the type: 

 

 const ::  a b. a -> b -> a  

 const x y = x 

 

 apply ::  a b. (a -> b) -> a -> b 

  apply f x = f x 

 

• What do we do when we need to make 
an assumption? 

 

October 5, 2015 



 L08-3 

A simple sum function 

-- List data type 

data [x] = [] | x : [x] 

 

sum n []     = n 

sum n (x:xs) = sum (n + x) xs 

 

• sum cannot be of type a -> [a] -> a, 

we make use of the type (we need to 
know how to add to objects in the list).  

 

• Pass in the notion of plus? 
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Avoiding constraints: Passing in + 

sum plus n []     = n 

sum plus n (x:xs) = sum (plus n x) xs 

 

• Now we can get have a polymorphic type 
for sum  

 

sum :: (a -> a -> a) -> 

              a -> [a] -> a 

 

• When we call sum we have to pass in the 
appropriate function representing addition  

October 5, 2015 



 L08-5 

Generalizing to other arithmetic 
functions 
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• A large class of functions do arithmetic operations 
(matrix multiply, FFT, Convolution, Linear 
Programming, Matrix solvers): 

• We can generalize, but we need +, -, *, /, … 

 

• Create a Numeric “class” type: 

 

data (Num a) = Num{ 

   (+) :: a -> a -> a 

   (-) :: a -> a -> a 

   (*) :: a -> a -> a 

   (/) :: a -> a -> a 

   fromInteger :: Integer  -> a 

} 
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Generalized Functions w/ “class” 
types 

matrixMul :: Num a -> Mat a -> Mat a -> Mat a 

dft       :: Num a -> Vec a -> Vec a -> Vec a 

 

• All of the numeric aspects of the type has been isolated to 
the Num type 
– For each type, we built a num instance 

– The same idea can encompass other concepts (Equality, Ordering, 
Conversion to/from String) 

 

• Issues: Dealing with passing in num objects is annoying: 
– We have to be consistent in our passing of funcitons 

– Defining Num for generic types (Mat a) requires we pass the correct 
num a to a generator (num_mat :: Num a -> Num (Mat a)) 

– Nested objects may require a substantial number of “class” objects 
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Push “class” objects into type class 
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Type  Classes 

Type classes group together related functions 
(e.g., +, -) that are overloaded over the same 
types (e.g., Int, Float): 

class Num a where 

(==), (/=)  ::   a -> a -> Bool 

(+), (-), (*)  ::   a -> a -> a 

negate         ::   a -> a 

... 

 

instance Num Int where 

 x == y  = integer_eq x y 

 x + y  = integer_add x y 

… 

instance Num Float where ... 
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Type Class Hierarchy 

class Eq a where 

  (==), (/=) :: a -> a -> Bool 

 

class (Eq a) => Ord a where 

(<),(<=),(>=),(>) :: a -> a -> Bool 

     max, min     :: a -> a -> a 

• Each type class corresponds to one 
concept and class constraints give rise to 
a natural hierarchy on classes 

• Eq is a superclass of Ord: 
– If type a is an instance of Ord, a is also an instance 

of Eq 

– Ord inherits the specification of (==), (/=) from Eq 
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Laws for a type class 

• A type class often has laws associated 
with it 
– E.g., + in Num should be associate and 

commutative 

• These laws are not checked or ensured 
by the compiler; the programmer has to 
ensure that the implementation of each 
instance correctly follows the law 
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more on this later 
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(Num a) as a predicate in type 
defintions 

• We can view type classes as predicates 
 

• Deals with all the passing we had to do in our 
data passing fashion 
– The type implies which objects should be passed in 
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Type classes is merely a type discipline 
which makes it easier to write a class of 
programs; after type checking the compiler 
de-sugars the language into pure -calculus 
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Subtyping 
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Related Reading 

 

Chapter 15 of Pierce, “Subtyping” 
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Subtyping in Java: Primitive Types 

 

void foo(int n) { 

 float f = n; 

 // ...and so on. 

} 

int ≤ float 
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interface List { 

 List append(List); 

} 

class Nil implements List { 

 Nil() { } 

 List append(ls) { return ls; } 

} 

class Cons implements List { 

 private int data; 

 private List tail; 

 

 Cons(int d, List t) { data = d; tail = t; } 

 List append(ls) { 

  return Cons(data, tail.append(ls)); 

 } 

} 

Nil ≤ List 
Cons ≤ List 

Subtyping in Java: Interfaces 



 L08-15 

class Cons implements List { 

 /* … */ 

} 

class LoggingCons extends Cons { 

 private int numAppends; 

 

 LoggingCons(int d, List t) { 

  super(d, t); 

  numAppends = 0; 

 } 

 

 List append(ls) { 

  ++numAppends; 

  return super.append(ls); 

 } 

 int howManyAppends() { return numAppends; } 

} 

LoggingCons ≤ Cons 

Subtyping in Java: Inheritance 
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Subtyping as Graph Search 

int 

float Arrow from A to B to indicate 
that B is a “direct” subtype of A 

List 

Nil Cons 

LoggingCons 

Q: How do we decide if A is a subtype of B? 
A: Graph reachability!  (Easy, right?) 
 
We do need to think harder when the graph can be infinite. 
(E.g., what about generics?) 
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Subtyping as a Formal Judgment 

𝜏 ≤ 𝜏′′ 
𝜏 ≤ 𝜏′ 𝜏′ ≤ 𝜏′′ 

Transitivity: 𝜏 ≤ 𝜏 Reflexivity: 

int ≤ float Primitive rule: 

A ≤ B Inheritance: 
class A extends B 

A ≤ B Interfaces: 
class A implements B 

This style of subtyping is called nominal, because 
the edges between user-defined types are all 
declared explicitly, via the names of those types. 
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Assume we have some operator ⋅ , 
such that 𝜏  is a mathematical set that represents 𝜏. 
 
[int] = ℤ 
[float] = ℝ 
 
What's a natural way to formulate subtyping here? 
 
𝜏1 ≤ 𝜏2 iff 𝜏1   ?  𝜏2  
 
What about cases like: 
 struct s1 { int a; int b; } 

 struct s2 { float b; } 

 Is either of these a subtype of the other? 

What is Subtyping, Really? 
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𝜏1 ≤ 𝜏2 
if 

Anywhere it is legal to use a 𝜏2, 
it is also legal to use a 𝜏1. 

A More Helpful Guiding Principle 
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Typing rule for subtypes 

Γ ⊢ 𝑒: 𝜏′     𝜏′ ≤ 𝜏

Γ ⊢ 𝑒 ∶ 𝜏
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Sanity-Checking the Principle 

int ≤ float Primitive rule: 

✔Any integer N can be treated as N.0, with no loss of meaning. 

float ≤ int Primitive rule: 

✗E.g., “%” operator defined for int but not float. 

int ≤ int → int 
Primitive rule: 

✗Can't call an int! 
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From Nominal to Structural 

A structural subtyping system 
includes rules that analyze the 

structure of types, rather than just 
using graph edges declared by 

the user explicitly. 
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Pair Types 

Consider types  𝜏1 × 𝜏2, 
consisting of (immutable) pairs of a 𝜏1 and a 𝜏2. 
 
What is a good subtyping rule for this feature? 
Ask ourselves: What operations does it support? 
 1. Pull out a 𝜏1. 
 2. Pull out a 𝜏2. 
 

𝜏1 ≤ 𝜏1
′
 𝜏2 ≤ 𝜏2

′
 

𝜏1× 𝜏2≤ 𝜏1
′  × 𝜏2

′
 

Jargon: The pair type constructor is covariant. 
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Consider types like { a1 : 𝜏1, …, aN : 𝜏N }, 
consisting of, for each i, a field ai of type 𝜏i. 
 
What operations must we support? 
 1. For any i, pull out a 𝜏i from ai. 

{ai : 𝜏i} ≤ {ai : 𝜏'i} 

∀i. 𝜏i ≤ 𝜏'i 
Depth subtyping: Same field names, 

possibly with 
different types 

Width subtyping: 
{ai : 𝜏i} ≤ {a'j : 𝜏'j} 

∀j. ∃i. ai = a'j ∧ 𝜏i = 𝜏'j 
Field names 
may be different 

Record Types 
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Record Type Examples 

{A : int, B : float} ≤ {A : float, B : float} 

{ai : 𝜏i} ≤ {ai : 𝜏'i} 

∀i. 𝜏i ≤ 𝜏'i 
Depth: 

Width: 
{ai : 𝜏i} ≤ {a'j : 𝜏'j} 

∀j. ∃i. ai = a'j ∧ 𝜏i = 𝜏'j 

? 
Yes! 

{A : float, B : float} ≤ {A : int, B : float} 
? 

No! 

{A : int, B : float} ≤ {A : float} 
? 

Yes! 
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Function Types 

Consider types 𝜏1 → 𝜏2. 
 
What operations must we support? 
 1. Call with a 𝜏1to receive a 𝜏2 as output. 

𝜏1 ≤ 𝜏'1 𝜏2 ≤ 𝜏'2 
𝜏1 → 𝜏2 ≤ 𝜏'1 → 𝜏'2 

Optimistic 
covariant rule: 

Counterexample: int → int ≤ float → int 
 
(𝜆 x : int. x % 2) : int → int 
 

Breaks when we call it with 1.23! 
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Consider types 𝜏1 → 𝜏2. 
 
What operations must we support? 
 1. Call with a 𝜏1 to receive a 𝜏2 as output. 

𝜏'1 ≤ 𝜏1 𝜏2 ≤ 𝜏'2 
𝜏1 → 𝜏2 ≤ 𝜏'1 → 𝜏'2 

Swap order for 
function domains! 

The function arrow is contravariant in the domain 
and covariant in the range! 

Example: float → int ≤ int → int 
Assume f : float → int 
Build (𝜆 x. f(intToFloat(x))) : int → int 

Function Types 
 



 L08-28 

Arrays 

Consider types 𝜏[]. 
 
What operations must we support? 
 1. Read a 𝜏 from some index. 
 2. Write a 𝜏 to some index. 

𝜏1 ≤ 𝜏2 
𝜏1[] ≤ 𝜏2[] 

Covariant rule: 

Counterexample: 
 
int[] x = new int[1]; 

float[] y = x; // Use subtyping here. 

y[0] = 1.23; 

int z = x[0]; // Not an int! 
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Consider types 𝜏[]. 
 
What operations must we support? 
 1. Read a 𝜏 from some index. 
 2. Write a 𝜏 to some index. 

𝜏2 ≤ 𝜏1 
𝜏1[] ≤ 𝜏2[] 

Contravariant rule: 

Counterexample: 
 
float[] x = new float[1]; 

int[] y = x; // Use subtyping here. 

x[0] = 1.23; 

int z = y[0]; // Not an int! 

Arrays 
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Consider types 𝜏[]. 
 
What operations must we support? 
 1. Read a 𝜏 from some index. 
 2. Write a 𝜏 to some index. 

Correct rule: None at all! 
 Only reflexivity applies to array types. 
 
In other words, the array type constructor is invariant. 
 
Java and many other “practical” languages use the 
covariant rule for convenience. 
Run-time type errors (exceptions) are possible! 

Arrays 
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Subtyping Variance and 
Generics/Polymorphism 

List<𝜏1> ≤ List<𝜏2> 
? 

List and most other “data structures” will be 
covariant. 
There are reasonable uses for contravariant and 
invariant generics, including mixing these modes 
across multiple generic parameters. 
Languages like OCaml and Scala allow generics to 
be annotated with variance. 
 
[Haskell doesn't have subtyping and avoids the 
whole mess.] 
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