Type Classes and Subtyping

Armando Solar-Lezama
Computer Science and Artificial Intelligence Laboratory
MIT
October 5, 2015
With content by Arvind and Adam Chlipala.
Used with permission.

Hindley-Milner gives us generic functions

- Can generalize a type if the function makes no assumptions about the type:
const : : $\forall \mathrm{a}$ b. $\mathrm{a}->\mathrm{b}->\mathrm{a}$
const $x y=x$
apply : : $\forall \mathrm{a}$ b. (a $->\mathrm{b})->\mathrm{a}->\mathrm{b}$
apply $\mathbf{f} \mathbf{x}=\mathbf{f}$
- What do we do when we need to make an assumption?

A simple sum function

-- List data type
data $[\mathrm{x}]=[] \mid \mathbf{x}:[\mathrm{x}]$
sum n [] $\quad=\mathrm{n}$
$\operatorname{sum} n(x: x s)=\operatorname{sum}(n+x) x s$

- sum cannot be of type a -> [a] -> a, we make use of the type (we need to know how to add to objects in the list).
- Pass in the notion of plus?

Avoiding constraints: Passing in +

```
sum plus n [] = n
sum plus n (x:xs) = sum (plus n x) xs
```

- Now we can get have a polymorphic type for sum
sum :: (a -> a -> a) ->

$$
a->[a]->a
$$

- When we call sum we have to pass in the appropriate function representing addition

Generalizing to other arithmetic functions

- A large class of functions do arithmetic operations (matrix multiply, FFT, Convolution, Linear Programming, Matrix solvers):
- We can generalize, but we need +, -, *, /, ...
- Create a Numeric "class" type:

```
data (Num a) = Num{
    (+) :: a -> a -> a
    (-) :: a -> a -> a
    (*) :: a -> a -> a
    (/) :: a -> a -> a
    fromInteger :: Integer -> a
}
```


Generalized Functions w/ "class" types

```
matrixMul :: Num a -> Mat a -> Mat a -> Mat a
dft :: Num a -> Vec a -> Vec a -> Vec a
```

- All of the numeric aspects of the type has been isolated to the Num type
- For each type, we built a num instance
- The same idea can encompass other concepts (Equality, Ordering, Conversion to/from String)
- Issues: Dealing with passing in num objects is annoying:
- We have to be consistent in our passing of funcitons
- Defining Num for generic types (Mat a) requires we pass the correct num a to a generator (num_mat : : Num a \rightarrow Num (Mat a))
- Nested objects may require a substantial number of "class" objects

Push "class" objects into type class

Type Classes

Type classes group together related functions (e.g., +, -) that are overloaded over the same types (e.g., Int, Float):

```
class Num a where
    (==), (/=) :: a -> a -> Bool
    (+), (-), (*) :: a -> a -> a
    negate
    :: a -> a
instance Num Int where
    x == y = integer_eq x y
    x + y = integer_add x y
instance Num Float where
```


Type Class Hierarchy

class Eq a where
(==) , (/=) : : a $->$ a $->$ Bool
class (Eq a) => Ord a where
$(<),(<=),(>=),(>):: ~ a ~->~ a ~->~ B o o l ~$
max, min $:$: a $->$ a $->$ a

- Each type class corresponds to one concept and class constraints give rise to a natural hierarchy on classes
- Eq is a superclass of Ord:
- If type a is an instance of Ord, a is also an instance of Eq
- Ord inherits the specification of $(==),(/=)$ from Eq

Laws for a type class

- A type class often has laws associated with it
- E.g., + in Num should be associate and commutative
- These laws are not checked or ensured by the compiler; the programmer has to ensure that the implementation of each instance correctly follows the law
more on this later

(Num a) as a predicate in type defintions

- We can view type classes as predicates
- Deals with all the passing we had to do in our data passing fashion
- The type implies which objects should be passed in

Type classes is merely a type discipline which makes it easier to write a class of programs; after type checking the compiler de-sugars the language into pure λ-calculus

Subtyping

Related Reading

Chapter 15 of Pierce, "Subtyping"

Subtyping in Java: Primitive Types

void foo(int n) \{
float $\mathrm{f}=\mathrm{n}$;
// ...and so on.
\}

int $\leq f l o a t$

Subtyping in Java: Interfaces

```
interface List {
    List append(List);
}
class Nil implements List {
    Nil() { }
    List append(ls) { return ls; }
}
class Cons implements List {
    private int data;
    private List tail;
    Cons(int d, List t) { data = d; tail = t; }
    List append(ls) {
        return Cons(data, tail.append(ls));
    }
}
```


Subtyping in Java: Inheritance

```
class Cons implements List
    /* ... */
}
class LoggingCons extends Cons {
    private int numAppends;
    LoggingCons(int d, List t) {
        super(d, t);
        numAppends = 0;
                                    LoggingCons \leq Cons
    List append(ls) {
        ++numAppends;
        return super.append(ls);
    }
    int howManyAppends() { return numAppends; }
```

\}

Subtyping as Graph Search

LoggingCons
LoggingCons

Arrow from A to B to indicate that B is a "direct" subtype of A

Q: How do we decide if A is a subtype of B ?
A: Graph reachability! (Easy, right?)
We do need to think harder when the graph can be infinite.
(E.g., what about generics?)

Subtyping as a Formal Judgment

Reflexivity: $\quad \tau \leq \tau \quad$ Transitivity: $\frac{\tau \leq \tau^{\prime} \tau^{\prime} \leq \tau^{\prime \prime}}{\tau \leq \tau^{\prime \prime}}$
Primitive rule: $\overline{\text { int } \leq \text { float }}$
Inheritance: $\frac{\text { class A extends B }}{A \leq B}$ Interfaces: $\frac{\text { class A implements B }}{\text { A S B }}$
This style of subtyping is called nominal, because the edges between user-defined types are all declared explicitly, via the names of those types.

What is Subtyping, Really?

Assume we have some operator $\llbracket \cdot \rrbracket$, such that $\llbracket \tau \rrbracket$ is a mathematical set that represents τ.
[int] = \mathbb{Z}
[float] = \mathbb{R}

What's a natural way to formulate subtyping here?
$\tau_{1} \leq \tau_{2}$ iff $\llbracket \tau_{1} \rrbracket ? ~ \llbracket \tau_{2} \rrbracket$
What about cases like:

$$
\begin{aligned}
& \text { struct s1 \{ int } a ; \text { int } b ;\} \\
& \text { struct } s 2\{\text { float } b ;\} \\
& \text { Is either of these a subtype of the other? }
\end{aligned}
$$

A More Helpful Guiding Principle

$$
\tau_{1} \underset{\text { if }}{\leq} \tau_{2}
$$

Anywhere it is legal to use a τ_{2}, it is also legal to use a τ_{1}.

Typing rule for subtypes

$$
\frac{\Gamma \vdash e: \tau^{\prime} \quad \tau^{\prime} \leq \tau}{\Gamma \vdash e: \tau}
$$

Sanity-Checking the Principle

$$
\text { Primitive rule: } \overline{\text { int } \leq \text { float }}
$$

\checkmark Any integer N can be treated as N .0 , with no loss of meaning.
Primitive rule: $\overline{\text { float } \leq \text { int }}$

XE.g., "॰" operator defined for int but not float.

$$
\text { Primitive rule: } \overline{\text { int } \leq \text { int } \rightarrow \text { int }}
$$

x Can't call an int!

From Nominal to Structural

A structural subtyping system includes rules that analyze the structure of types, rather than just using graph edges declared by the user explicitly.

Pair Types

Consider types $\tau_{1} \times \tau_{2}$,
consisting of (immutable) pairs of a τ_{1} and a τ_{2}.
What is a good subtyping rule for this feature? Ask ourselves: What operations does it support?

1. Pull out a τ_{1}.
2. Pull out a τ_{2}.

$$
\frac{\tau_{1} \leq \tau_{1}^{\prime} \quad \tau_{2} \leq \tau_{2}^{\prime}}{\tau_{1} \times \tau_{2} \leq \tau_{1}^{\prime} \times \tau_{2}^{\prime}}
$$

Jargon: The pair type constructor is covariant.

Record Types

Consider types like $\left\{\mathrm{a}_{1}: \tau_{1}, \ldots, \mathrm{a}_{\mathrm{N}}: \tau_{\mathrm{N}}\right\}$, consisting of, for each i, a field a_{i} of type τ_{i}.

What operations must we support?

1. For any i, pull out a τ_{i} from a_{i}.

Depth subtyping:

Width subtyping:

\forall i. $\tau_{i} \leq \tau^{\prime}{ }_{i}$	
$\left.\overline{\left\{\mathrm{a}_{i}: \vec{\tau}_{i}\right\} \leq\left\{\overrightarrow{\mathrm{a}}_{i}: \tau_{i}\right\}}\right\}$	Same field names, possibly with different types
$\forall j . \exists i . \mathrm{a}_{i}=\mathrm{a}_{j}^{\prime} \wedge \tau_{i}=\tau^{\prime}$	
$\left\{\overrightarrow{\mathrm{a}_{i}: \vec{\tau}_{i}}\right\} \leq\left\{\overrightarrow{\mathrm{a}}_{j}: \tau_{j}\right\}$	7 Field names \int may be different

Record Type Examples

$\{A$: int, $B: f l o a t\} \stackrel{?}{\leq}\{A$: float, $B: f l o a t\}$
A : int, B : float $\} \stackrel{?}{\leq}\{A$: float $\}$
Depth: $\frac{\forall i . \tau_{i} \leq \tau_{i}^{\prime}}{\left\{{\overrightarrow{\mathrm{a}} i_{i}: \tau_{i}}_{\}}\right\} \leq\left\{\overrightarrow{\mathrm{a}_{i}: \tau_{i}}\right\}}$
Width: $\frac{\forall j . \exists i . \mathrm{a}_{i}=\mathrm{a}_{j}^{\prime} \wedge \tau_{i}=\tau_{j}^{\prime}}{\left\{\overrightarrow{\mathrm{a}_{j}: \vec{\tau}_{i}}\right\} \leq\left\{\mathrm{a}_{j}^{\prime}: \tau_{j}^{\prime}\right\}}$

Function Types

Consider types $\tau_{1} \rightarrow \tau_{2}$.
What operations must we support?

1. Call with a τ_{1} to receive a τ_{2} as output.

Optimistic

$$
\tau_{1} \leq \tau_{1}^{\prime} \quad \tau_{2} \leq \tau_{2}^{\prime}
$$

$$
\text { covariant rule: } \tau_{1} \rightarrow \tau_{2} \leq \tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime}
$$

Counterexample: int \rightarrow int \leq float \rightarrow int
$(\lambda x:$ int. $x \div 2):$ int \rightarrow int
Breaks when we call it with 1.23 !

Function Types

Consider types $\tau_{1} \rightarrow \tau_{2}$.
What operations must we support?

1. Call with a τ_{1} to receive a τ_{2} as output.

Swap order for function domains!	$\tau_{1}^{\prime} \leq \tau_{1} \quad \tau_{2} \leq \tau_{2}^{\prime}$ $\tau_{1} \rightarrow \tau_{2} \leq \tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime}$,$~$

The function arrow is contravariant in the domain and covariant in the range!

Example: float \rightarrow int \leq int \rightarrow int
Assume f: float \rightarrow int
Build (λx. f(intToFloat $(x))$) : int \rightarrow int

Arrays

Consider types $\tau[]$.

What operations must we support?

1. Read a τ from some index.
2. Write a τ to some index.

$$
\text { Covariant rule: } \frac{\tau_{1} \leq \tau_{2}}{\tau_{1}[] \leq \tau_{2}[]}
$$

Counterexample:

```
int[] x = new int[1];
float[] y = x; // Use subtyping here.
y[0] = 1.23;
int z = x[0]; // Not an int!
```


Arrays

Consider types $\tau[]$.
What operations must we support?

1. Read a τ from some index.
2. Write a τ to some index.

Contravariant rule: $\frac{\tau_{2} \leq \tau_{1}}{\tau_{1}[] \leq \tau_{2}[]}$
Counterexample:

```
float[] x = new float[1];
int[] y = x; // Use subtyping here.
x[0] = 1.23;
int z = y[0]; // Not an int!
```


Arrays

Consider types $\tau[]$.
What operations must we support?

1. Read a τ from some index.
2. Write a τ to some index.

Correct rule: None at all!
Only reflexivity applies to array types.
In other words, the array type constructor is invariant.
Java and many other "practical" languages use the covariant rule for convenience.
Run-time type errors (exceptions) are possible!

Subtyping Variance and Generics/Polymorphism

$$
\text { List }<\tau_{1}>\stackrel{?}{\leq} \text { List }<\tau_{2}>
$$

List and most other "data structures" will be covariant.
There are reasonable uses for contravariant and invariant generics, including mixing these modes across multiple generic parameters. Languages like OCaml and Scala allow generics to be annotated with variance.
[Haskell doesn't have subtyping and avoids the whole mess.]

MIT OpenCourseWare
http://ocw.mit.edu

6.820 Fundamentals of Program Analysis

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

