

Computer Science and Artificial Intelligence Laboratory

MIT
Armando Solar-Lezama

Nov 23, 2015

November 23, 2015

Introduction to Models and
Properties

1

Recap

Flexible

Push-button

Properties

Yes No No Yes

Yes Yes Yes No

Properties
of variables

Properties
at program

points

Properties
at program

points

Properties
of execution

traces

2

Model Checking Today

o Hardware Model Checking

- part of the standard toolkit for hardware design

• Intel has used it for production chips since Pentium 4

• For the Intel Core i7, most pre-silicon validation was done through

formal methods (i.e. Model Checking + Theorem Proving)

- many commercial products

• IBM RuleBase, Synopsys Magellan, …

o Software Model Checking

- Static driver verifier now a commercial Microsoft product

- Java PathFinder used to verify code for mars rover

o This doesn’t mean Model Checking is a solved problem

- Far from it

 3

Model Checking Genesis

o The paper that started it all

- Clarke and Emerson, Design and Synthesis of Synchronization

Skeletons using branching time temporal logic

“Proof Construction is Unnecessary in the case of finite state

concurrent systems and can be replaced by a model-theoretic

approach which will mechanically determine if the system meets a

specification expressed in propositional temporal logic”

4

Intellectual Roots

o Two important developments preceded this paper

- Verification through exhaustive exploration of finite state models

• G. V. Bochmann and J. Gecsei, A unified method for the specification

and verification of protocols, Proc. IFIP Congress 1977

- Development of Linear Temporal Logic and its application to

specifying system properties

• A. Pnueli, The temporal semantics of concurrent programs. 1977

5

Model Checking

o The model checking approach

o (as characterized by Emerson)

- Start with a program that defines a finite state graph M

- Search M for patterns that tell you whether a specification f holds

- Pattern specification is flexible

- The method is efficient in the sizes of M and hopefully also f

- The method is algorithmic

6

So what exactly is a model?

o Remember our friend ⊢?

- What does this mean? ⊢ 𝑥 ∧ 𝑦 ⇒ 𝑥

• The statement above can be established through logical deduction

• Axiomatic semantics and type theory are deductive

– The program, together with the desired properties make a theorem

– We use deduction to prove the theorem

- What about this; is it true? ⊢ 𝑥 + 𝑦 == 5

• We can not really establish this through deduction

• We can say whether it’s true or false under a given model
[x=3, y=2] ⊨ 𝑥 + 𝑦 == 5

o You have seen this symbol too ⊨

- In operational semantics, the variable assignments were the

model

- The program behavior was the theorem we were trying to prove

under a given model 7

Basic Notions of Model Theory

o Consider the following sentence:

- S := The class today was awesome

o Is this sentence true or false?

- that depends

• What class is “the class”? What day is “today”?

o We can give this sentence an Interpretation

- I := The class is 6.820, Today is Tuesday Nov 22

o When an interpretation I makes S true we say that

- I satisfies S

- I is a model of S

-

8

The model checking problem

o We are interested in deciding whether for the

special case where

- I is a Kripke structure

- S is a temporal logic formula

o Today you get to learn what each of these things are

o But the high level idea is:

- Unlike axiomatic semantics, where the program was part of the

theorem,

- The program will now be the model

• Well, not the program directly, but rather a kripke structure

representing the program

9

Kripke Structures as Models

o Kripke structure is a FSM with labels

o Kripke structure = (S, S0, R, L)

- S = finite set of states

- S0 ⊆ S = set of initial states

- R ⊆ S x S = transition relation

- L :S 2AP = labels each state with a set of atomic propositions

10

Microwave Example

- S = {s1, s2, s3, s4}

- S0={s1}

- R = { (s1,s2), (s2,s1), (s1,s4),

(s4,s2), (s2,s3), (s3,s2),

(s3,s3)}

- L(s1)={-close, -start, -cooking}

- L(s2)={close, -start, -cooking}

- L(s3)={close, start, cooking}

- L(s4)={-close, start, -cooking}

o Can the microwave cook

with the door open?

s1

s4

s3

s2

-close
-start
-cooking

-close
start
-cooking

close
start
cooking

close
-start
-cooking

open door

close door

close door

start

start
finish

cooking

11

Kripke structures describe computations

o A Kripke structure can describe an infinite process

- We can interpret it as an infinite tree

- We need a language to describe properties

 of paths down the computation tree

s1

s4

s3

s2

-close
-start
-cooking

-close
start
-cooking

close
start
cooking

close
-start
-cooking

open door

close door

close door

start

start
finish

cooking

s1

s4 s2

s2 s1 s3

s1 s3 s4 s2 s3 s2

s4 s2 s3 s2 s2 s1 s3

…

12

Linear Temporal Logic

o Let 𝜋 be a sequence of states in a path down the tree

- 𝜋 := s0, s1, s2, …

- Let 𝜋i be a subsequence starting at i

o We are going to define a logic to describe properties over

paths

13

Properties over states

o State Formulas

- Can be established as true or false on a given state

- If p ϵ {AP} then p is a state formula

- if f and g are state formulas, so are (f and g), (not f), (f or g)

- Ex. (not closed and cooking)

14

For paths

o Path formulas

- a state formula p is also a path formula

• p(𝜋i) := p(si)

- boolean operations on path formulas are path formulas

• f and g(𝜋i) := f(𝜋i) and g(𝜋i)

- path quantifiers

• G f (𝜋i) := globally f (𝜋i) = forall k>= i f (𝜋k) (may abbreviate as)

• F f (𝜋i) := eventually f (𝜋i) = exists k>= i f (𝜋k) (may abbreviate as)

• X f (𝜋i) := next f (𝜋i) = f (𝜋i+1) (may abbreviate as)

• f U g (𝜋i) := f until g = exists k >= i s.t. g(𝜋k) and f(𝜋j) for i<=j<k

o Given a forumula f and a path 𝜋,
- if f(𝜋) is true, we say that

15

Examples

o If you submit your homework (submit) you eventually get

a grade back (grade)

- G (submit => F grade)

o You should get your grade before you submit the next

homework

- 𝐺 (𝑠𝑢𝑏𝑚𝑖𝑡 ⇒ 𝑋 ¬𝑠𝑢𝑏𝑚𝑖𝑡 𝑈 𝑔𝑟𝑎𝑑𝑒)

• What’s wrong with 𝐺 𝑠𝑢𝑏𝑚𝑖𝑡 ⇒ ¬𝑠𝑢𝑏𝑚𝑖𝑡 𝑈 𝑔𝑟𝑎𝑑𝑒 ?

o If assignment i was submitted before drop date, you

should get your grade before drop date

- 𝐺 𝑠𝑢𝑏𝑚𝑖𝑡𝑖 ⇒ 𝐹 𝑑𝑟𝑜𝑝𝐷𝑎𝑡𝑒 ⇒ (𝐺 𝑔𝑟𝑎𝑑𝑒𝑖 ⇒ 𝐹 𝑑𝑟𝑜𝑝𝐷𝑎𝑡𝑒)

- and G (submit => F grade)

 16

MIT OpenCourseWare
http://ocw.mit.edu

6.820 Fundamentals of Program Analysis
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

