The λ-calculus

Armando Solar Lezama
 Computer Science and Artificial Intelligence Laboratory M.I.T.

Adapted from Arvind 2010.

Used with permission.

Functions

- A function may be viewed as a set of ordered pairs $<d, r>$ where $d \in D$ and $r \in R$
- But we need to specify a method of computing value r corresponding to argument d
- Important notations for this purpose were developed in the 1930s
- λ-calculus (Church)
- Turing machines (Turing)
- Partial recursive functions

The λ-calculus: a simple type-free language

- a way of writing and applying functions without having to give them names
- useful for studying evaluation orders, termination, confluence...
- useful for studying various typing systems
- often serves as a kernel language for functional languages

Pure λ-calculus: Syntax

$E=x|\lambda x . E| E E$
 variable abstraction application

1. application

- application is left associative

$$
E_{1} E_{2} E_{3} E_{4} \equiv\left(\left(\left(E_{1} E_{2}\right) E_{3}\right) E_{4}\right)
$$

2. abstraction

$$
\overbrace{\text { riable }}^{\lambda x \cdot E} \backslash
$$ or formal parameter

- the scope of the dot in an abstraction extends as far to the right as possible

$$
\lambda x \cdot x y \equiv \lambda x \cdot(x y) \equiv(\lambda x \cdot(x y)) \equiv(\lambda x \cdot x y) \neq(\lambda x \cdot x) y
$$

Free and Bound Variables

- λ-calculus follows lexical scoping rules
- Free variables of an expression

$$
\begin{array}{ll}
\mathrm{FV}(x) & =\{x\} \\
\mathrm{FV}\left(\mathrm{E}_{1} \mathrm{E}_{2}\right) & =\mathrm{FV}\left(\mathrm{E}_{1}\right) \cup \mathrm{FV}\left(\mathrm{E}_{2}\right) \\
\mathrm{FV}(\lambda x . E) & =\operatorname{FV}(\mathrm{E})-\{x\}
\end{array} ?
$$

- A variable occurrence which is not free in an expression is said to be a bound variable of the expression
combinator or closed λ-expression: a λ-expression without free variables

β-substitution

$(\lambda x . E) E_{a} \rightarrow E\left[E_{a} / x\right]$

replace all free occurrences of x in E with E_{a}
$E[A / x]$ is defined by cases on E :
variable

$$
\begin{aligned}
& y\left[E_{a} / x\right]=E_{a} \\
& y\left[E_{a} / x\right]=y
\end{aligned}
$$

$$
\text { if } x \equiv y
$$

otherwise
?
application

$$
\left(\mathrm{E}_{1} \mathrm{E}_{2}\right)\left[\mathrm{E}_{\mathrm{a}} / \mathrm{x}\right]=\left(\mathrm{E}_{1}\left[\mathrm{E}_{\mathrm{a}} / \mathrm{x}\right] \quad \mathrm{E}_{2}\left[\mathrm{E}_{\mathrm{a}} / \mathrm{x}\right]\right) \text { ? }
$$

abstraction

$$
\begin{aligned}
& \left(\lambda y \cdot E_{1}\right)\left[E_{a} / x\right]=\lambda y \cdot E_{1} \quad \text { if } x \equiv y \\
& \left(\lambda y \cdot E_{1}\right)\left[E_{a} / x\right]=\lambda z .\left(\left(E_{1}[z / y]\right)\left[E_{a} / x\right]\right) \quad \text { otherwise } \\
& \text { where } z \notin F V\left(E_{1}\right) \cup F V\left(E_{a}\right) \cup F V(x)
\end{aligned}
$$

β-substitution: an example

$$
\begin{aligned}
& (\lambda p . p(p q))[(a p b) / q] \\
\rightarrow \quad & (\lambda z \cdot z(z q))[(a p b) / q] \\
\rightarrow \quad & (\lambda z \cdot z(z(a p b)))
\end{aligned}
$$

λ-Calculus as a Reduction System

Syntax

$$
E=x|\lambda x \cdot E| E E
$$

Reduction Rule

$$
\begin{array}{lll}
\alpha \text {-rule: } & \lambda x . \mathrm{E} \rightarrow \lambda \mathrm{y} . \mathrm{E}[\mathrm{y} / \mathrm{x}] & \text { if } \mathrm{y} \notin \mathrm{FV}(\mathrm{E}) \\
\beta \text {-rule: } & (\lambda \mathrm{x} . \mathrm{E}) \mathrm{E}_{\mathrm{a}} \rightarrow \mathrm{E}\left[\mathrm{E}_{\mathrm{a}} / \mathrm{x}\right] & \\
\eta \text {-rule: } & (\lambda \mathrm{x} . \mathrm{E} x) \rightarrow \mathrm{E}) & \text { if } \mathrm{x} \notin \mathrm{FV}(\mathrm{E})
\end{array}
$$

Redex

$$
(\lambda x . E) E_{a}
$$

Normal Form
An expression without redexes

α and η Rules

α-rule says that the bound variables can be renamed systematically:

$$
(\lambda x \cdot x(\lambda x \cdot a \quad x)) b \equiv(\lambda y \cdot y(\lambda x \cdot a \quad x)) b
$$

η-rule can turn any expression, including a constant, into a function:

$$
\lambda x . a x \quad \rightarrow_{\eta} \quad a
$$

η-rule does not work in the presence of types; we will not consider it any further

A Sample Reduction

$$
\begin{aligned}
\mathrm{C} & \equiv \lambda \mathrm{x} . \lambda \mathrm{y} . \lambda \mathrm{f} . \mathrm{f} x \mathrm{y} \\
\mathrm{H} & \equiv \lambda \mathrm{f} . f(\lambda \mathrm{x} \cdot \lambda \mathrm{y} . \mathrm{x}) \\
\mathrm{T} & \equiv \lambda \mathrm{f} . f(\lambda \mathrm{x} . \lambda \mathrm{y} . \mathrm{y})
\end{aligned}
$$

What is $\mathrm{H}(\mathrm{C}$ a b) ?

$$
\begin{array}{ll}
\rightarrow & (\lambda f . f(\lambda x . \lambda y . x))(C a b) \\
\rightarrow & (C a b)(\lambda x \cdot \lambda y . x) \\
\rightarrow & (\lambda f . f a b)(\lambda x . \lambda y . x) \\
\rightarrow & (\lambda x . \lambda y \cdot x) a b \\
\rightarrow & (\lambda y \cdot a) b \\
\rightarrow & a
\end{array}
$$

$\left.\begin{array}{lll}\mathrm{H}(\mathrm{C} & \mathrm{a} & \mathrm{b}) \\ \mathrm{T}(\mathrm{C} & \rightarrow & \mathrm{a}\end{array} \mathrm{a}\right) \quad \rightarrow \quad \mathrm{b}$

Integers: Church's Representation

$$
\begin{aligned}
& 0 \equiv \lambda x . \lambda y . y \\
& 1 \equiv \lambda x \cdot \lambda y . x y \\
& 2 \equiv \lambda x \cdot \lambda y \cdot x(x y) \\
& \ldots \\
& n \equiv \lambda x \cdot \lambda y . x(x \ldots(x y) \ldots)
\end{aligned}
$$

succ ?
If n is an integer, then (n a b) gives n nested a 's followed by b
$\Rightarrow \quad$ the successor of n should be $a(n a b)$ succ $\equiv \lambda$ n. $\lambda \mathrm{a} . \lambda \mathrm{b} . \mathrm{a}(\mathrm{n}$ a b) ?

Integer Arithmetic

$$
\begin{aligned}
& 0 \equiv \lambda \mathrm{x} . \lambda \mathrm{y} . \mathrm{y} \\
& 1 \equiv \lambda x . \lambda y . x y \\
& 2 \equiv \lambda x . \lambda y . x(x y) \\
& n \equiv \lambda x . \lambda y . x(x \ldots(x y) \ldots) \\
& \text { succ } \equiv \lambda n . \lambda a . \lambda b . a(n a b) \\
& \text { plus } \equiv \lambda m . \lambda n \text {.m succ } n \\
& \text { plus } m \mathrm{n} \text {-- apply succ } \mathrm{m} \text { times to } \mathrm{n} \\
& \text { mul } \equiv \lambda m . \lambda n . m \text { (plus } n \text {) } 0 \\
& \text { ? } \\
& \text { mul m n -- apply (plus } n \text {) to } 0 \mathrm{~m} \text { times }
\end{aligned}
$$

Booleans and Conditionals

$$
\begin{aligned}
\text { True } & \equiv \lambda x . \lambda y . x \\
\text { False } & \equiv \lambda x \cdot \lambda y \cdot y \\
& \\
\text { zero? } & \equiv \lambda n . n \text { (} \lambda y . \text { False }) \text { True } \\
\text { zero? } 0 & \rightarrow(\lambda x . \lambda y . y)(\lambda y . \text { False }) \text { True } \\
& \rightarrow(\lambda y . y) \text { True } \\
& \rightarrow \text { True }
\end{aligned}
$$

zero? $1 \rightarrow$ ($\lambda x . \lambda y . x y$ y) (λy.False) True \rightarrow ($\lambda \mathrm{y}$.False) True
\rightarrow False
cond $\equiv \lambda \mathrm{b} . \lambda \mathrm{x} . \lambda \mathrm{y} . \mathrm{b} \times \mathrm{y}$
cond True $E_{1} E_{2} \rightarrow E_{1}$ cond False $E_{1} E_{2} \rightarrow E_{2}$

Meaning of a term

- The semantics must distinguish between terms that should not be equal, i.e., if

$$
\begin{aligned}
& 0 \equiv \lambda x \cdot \lambda y \cdot y ; \quad 1 \equiv \lambda x \cdot \lambda y \cdot x y ; \quad 2 \equiv \lambda x \cdot \lambda y \cdot x(x y) \\
& \text { Then } \lambda x \cdot \lambda y \cdot y \neq \lambda x \cdot \lambda y \cdot x y \neq \lambda x \cdot \lambda y \cdot x(x y)
\end{aligned}
$$

- The semantics must equate terms that should be equal, i.e., the terms corresponding to (plus 01) and 1 must have the same meaning
- A semantics is said to be fully abstract if two terms have different meaning according to the semantics then there exists a term that can tell them apart

In the λ-calculus it is possible to define the meaning of a term almost syntactically

MIT OpenCourseWare
http://ocw.mit.edu
6.820 Fundamentals of Program Analysis

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

