What does my program mean?

Armando Solar Lezama Computer Science and Artificial Intelligence Laboratory M.I.T.

Adapted from Arvind 2010. Used with permission.

September 16, 2015

September 16, 2015

Meaning of a term

• The semantics must distinguish between terms that should not be equal, i.e., if

 $0 \equiv \lambda x . \lambda y . y; \quad 1 \equiv \lambda x . \lambda y . x y; \quad 2 \equiv \lambda x . \lambda y . x (x y)$

Then $\lambda x \cdot \lambda y \cdot y \neq \lambda x \cdot \lambda y \cdot x \cdot y \neq \lambda x \cdot \lambda y \cdot x \cdot (x \cdot y)$

- The semantics must equate terms that should be equal, i.e., the terms corresponding to (plus 0 1) and 1 must have the same meaning
- A semantics is said to be *fully abstract* if two terms have different meaning according to the semantics then there exists a term that can tell them apart

In the λ -calculus it is possible to define the meaning of a term almost syntactically

Information content of a term

Instantaneous information: A term obtained by replacing each redex in a term by \perp where \perp stands for no information

Term

- (λq.λp.p (q a)) (λz.z)
- $\rightarrow \lambda p.p ((\lambda z.z) a))$

 $\rightarrow \lambda p.p$ a

Instantaneous information

λ**p.p** a

 β -reductions monotonically increase information

The meaning of a term is the maximum information that can be obtained by $\beta\text{-reductions}$

September 16, 2015

Is the meaning of a term simply its normal form?

- Yes, but...
- What if a term doesn't have a normal form?
 - Is the meaning of such terms always \perp ?
 - Consider $\Omega = (\lambda x.x x) (\lambda x.x x)$
 - It doesn't have a normal form, and its meaning is \perp
 - What about $\lambda x. x \Omega$?
 - It doesn't have a normal form, but its meaning is $\lambda x.x \perp$
- What if a term has more than one normal form?
 - It would have two meanings. BAD
 - Not possible in the λ -calculus because of *Confluence* ...

Can the choice of redexes lead to different meaning?

• A term may have multiple redexes

---- ρ₂----

1. ((λx.M) A) ((λx.N) B)

 $\rho_1 - \rho_2 - \rho_2$

----- ρ₁-----

2. ((λx.M) ((λy.N)B))

• ρ_1 followed by ρ_2 does not necessary produce the same term as ρ_2 followed by ρ_1

- Notice in the second example ρ_1 can destroy or duplicate ρ_2 .
- Can our choice of redexes lead us to produce terms that are clearly different (e.g., x versus λy.y)?

Church-Rosser Property

A reduction system is said to have the *Church-Rosser property*, if $E \rightarrow E_1$ and $E \rightarrow E_2$ then there exits a E_3 such that $E_1 \rightarrow E_3$ and $E_2 \rightarrow E_3$.

also known as CR or Confluence

If a system has the CR property then the divergence in terms due to the choice of redexes can be corrected

Church-Rosser Theorem

Theorem: The λ -calculus is CR. (Martin-Lof & Tate)

- No satisfactory proof of this theorem was given until 1970 (30 years later!)
- The proof is elegant
- Requires showing how two divergent terms can be brought together in finite number of steps

strategy for choosing reductions

CR implies that if NF exists it is *unique*

An *interpreter* for the λ -calculus is a program to reduce λ -expressions to "answers".

Requires:

- the definition of an *answer*
 - e.g., normal form?
- a reduction strategy
 - a method to choose redexes in an expression

Definitions of "Answers"

- Normal form (NF): an expression without redexes
- Head normal form (HNF):

x is HNF ($\lambda x.E$) is in HNF if E is in HNF ($x E_1 \dots E_n$) is in HNF Semantically most interesting- represents the information content of an expression

• Weak head normal form (WHNF):

An expression in which the left most application is not a redex.

x is in WHNF ($\lambda x.E$) is in WHNF (x E₁... E_n) is in WHNF Practically most interesting \Rightarrow "Printable Answers"

Two Common Reduction Strategies

- *applicative order:* right-most innermost redex *aka call by value evaluation*
- normal order: left-most (outermost) redex aka call by name evaluation

$$(\lambda x.y) ((\lambda x.x x) (\lambda x.x x)) (- applicative order) \\ \rho_2 - normal order$$

Computing a normal form

1. Every λ -expression does not have an answer *i.e.*, a NF or HNF or WHNF

 $(\lambda \mathbf{X} \cdot \mathbf{X} \cdot \mathbf{X}) \quad (\lambda \mathbf{X} \cdot \mathbf{X} \cdot \mathbf{X}) = \Omega$ $\Omega \rightarrow \Omega \rightarrow \Omega \rightarrow \dots$

3. Even if an expression has an answer, not all reduction strategies may produce it $(\lambda x.\lambda y.y) \Omega$

leftmost redex: (λ x. λ y.y) Ω → λ y.y innermost redex: (λ x. λ y.y) Ω → (λ x. λ y.y) Ω → ... A *reduction strategy* is said to be *normalizing* if it terminates and produces an answer of an expression whenever the expression has an answer.

aka the standard reduction

Theorem: Normal order (left-most) reduction strategy is normalizing for the λ -calculus.

A Call-by-name Interpreter

Answers:WHNFApStrategy:leftmost redexbeth

Apply the function before evaluating the arguments

- *cn(E):* Definition by cases on E
- $E = x | \lambda x.E | E E$ cn([[x]]) = x $cn([[\lambda x.E]]) = \lambda x.E$ $cn([[E_1 E_2]]) = let f = cn(E_1)$ in case f of $\lambda x.E_3 = cn(E_3[E_2/x])$ $f E_2$ Meta syntax Meta syntax

September 16, 2015

A Call-by-value Interpreter

Answers:	WHNF		
Strategy:	rightmost-innermost redex but not		
	inside a λ -abstraction		
	Evaluate the argument before applying the function		
cv(E):	Definition by cases on E		
	$E = x \lambda x \cdot E E E$		
cv([[x]]) cv([[λx.Ε]	$= x$ $= \lambda x.E$		
$cv([[E_1 E_2$			
	$a = cv(E_2)$		
	in case f of		
	$\lambda x.E_3 = cv(E_3[a/x])$		
	_ = f a		

Coding this in Haskell with Algebraic Data Types

Algebraic types

- Algebraic types are *tagged unions of products*
- Example

new "constructors" (a.k.a. "tags", "disjuncts", "summands")
a k-ary constructor is applied to k type expressions

Examples of Algebraic types

```
data Bool = False | True
data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
data Maybe a = Nothing | Just a
data List a = Nil | Cons a (List a)
data Tree a = Leaf a | Node (Tree a) (Tree a)
data Tree' a b = Leaf' a
               | Nonleaf' b (Tree' a b) (Tree' a b)
data Course = Course String Int String (List Course)
                     name number description pre-reqs
```

Constructors are functions

• Constructors can be used as functions to create values of the type

```
let
    11 :: Shape
    11 = Line e1 e2
    t1 :: Shape = Triangle e3 e4 e5
    q1 :: Shape = Quad e6 e7 e8 e9
in
    ...
```

where each "eJ" is an expression of type "Pnt"

Pattern-matching on algebraic types

• *Pattern-matching* is used to examine values of an algebraic type

- A pattern-match has two roles:
 - A test: "does the given value match this pattern?"
 - Binding ("if the given value matches the pattern, bind the variables in the pattern to the corresponding parts of the value")
- Clauses are examined top-to-bottom and left-to-right for pattern matching

Big Step Semantics

Big Step Operational Semantics

- Model the execution in an abstract machine
- Basic Notation: Judgments

Some alternative notations: $\Downarrow, \rightarrow, \rightsquigarrow, \Rightarrow, etc \dots$

 $\langle configuration \rangle \rightarrow result$

- describe how a program configuration is evaluated into a result
- the configuration is usually a program fragment together with any state.
- Basic Notation: Inference rules
 - define how to derive judgments for an arbitrary program
 - also called derivation rules or evaluation rules
 - usually defined recursively

$$\frac{\langle c_1 \rangle \to r_1 \quad \langle c_2 \rangle \to r_2 \quad \dots \quad \langle c_k \rangle \to r_k}{\langle configuration \rangle \to result}$$

What evaluation order is this?

$$x \to x$$

 $\lambda x. e \rightarrow \lambda x. e$

$$\frac{e_1 \to \lambda x. e_1' \qquad e_1' [\alpha(e_2)/x] \to e_3}{e_1 e_2 \to e_3}$$

Call by Name

$$cn([[x]]) = x$$

$$cn([[\lambda x.E]]) = \lambda x.E$$

$$cn([[E_1 E_2]]) = let f = cn(E_1)$$

in case f of

$$\lambda x.E_3 = cn(E_3[E_2/x])$$

$$- = f E_2$$

Do these semantics coincide?

What evaluation order is this?

$$x \to x$$

 $\lambda x. e \rightarrow \lambda x. e$

$$e_1 \rightarrow \lambda x. e_1' \quad e_2 \rightarrow e_2' \quad e_1'[\alpha(e_2')/x] \rightarrow e_3$$

 $e_1 e_2 \rightarrow e_3$

Call by Value

$$cv([[x]]) = x$$

$$cv([[\lambda x.E]]) = \lambda x.E$$

$$cv([[E_1 E_2]]) = let f = cv(E_1)$$

$$a = cv(E_2)$$

in case f of

$$\lambda x.E_3 = cv(E_3[a/x])$$

$$= f a$$

Recursion and the Y Combinator

Recursion and Fixed Point Equations

Recursive functions can be thought of as solutions of fixed point equations:

fact = λ n. Cond (Zero? n) 1 (Mul n (fact (Sub n 1)))

Suppose

 $H = \lambda f.\lambda n.Cond (Zero? n) 1 (Mul n (f (Sub n 1)))$

then

fact = H fact

fact is a *fixed point* of function H!

Fixed Point Equations

f: $D \rightarrow D$ A fixed point equation has the form f(x) = x

Its solutions are called the *fixed points* of f because if x_p is a solution then $x_p = f(x_p) = f(f(x_p)) = f(f(f(x_p))) = ...$

We want to consider fixed-point equations whose solutions are functions, i.e., sets that contain their function spaces *domain theory, Scottary, ...*

An example

Consider f n = if n=0 then 1 else (if n=1 then f 3 else f (n-2)) $H = \lambda f.\lambda n.Cond(n=0, 1, Cond(n=1, f 3, f (n-2)))$ Is there an f_p such that f_p = H f_p?

f1 n	= 1 = ⊥	if n is even otherwise
60		
f2 n	= 1 = 5	if n is even otherwise

f1 contains no arbitrary information and is said to be the least fixed point (lfp)

Under the assumption of *monotonicity* and *continuity* least fixed points are unique and computable

September 16, 2015

Computing a Fixed Point

- Recursion requires repeated application of a function
- Self application allows us to recreate the original term
 - Consider: $\Omega = (\lambda x. x x) (\lambda x. x x)$
 - Notice β -reduction of Ω leaves Ω : $\Omega \rightarrow \Omega$
- Now to get F (F (F (F ...))) we insert F in Ω : $\Omega_F = (\lambda x.F(x x))(\lambda x.F(x x))$ which β -reduces to: $\Omega_F \rightarrow F(\lambda x. F(x x))(\lambda x. F(x x))$ $\rightarrow F \Omega_F \rightarrow F(F \Omega_F) \rightarrow F(F(F \Omega_F)) \rightarrow ...$
- Now λ –abstract F to get a Fix-Point Combinator:

 $Y \equiv \lambda f.(\lambda x. (f(x x))) (\lambda x.(f(x x)))$

Y : A Fixed Point Operator

$$Y = \lambda f.(\lambda x. (f(x x))) (\lambda x.(f(x x)))$$

Notice Y F

$$\rightarrow (\lambda x.F(x x)) (\lambda x.F(x x)) \rightarrow F(\lambda x.F(x x)) (\lambda x.F(x x)) \rightarrow F(Y F)$$

F(YF) = YF (YF) is a fixed point of F

Y computes the least fixed point of any function !

There are many different fixed point operators.

Mutual Recursion

odd n = if n==0 then False else even (n-1)even n = if n==0 then True else odd (n-1)

odd =
$$H_1$$
 even
even = H_2 odd
where
 $H_1 = \lambda f.\lambda n.Cond(n=0, False, f(n-1))$
 $H_2 = \lambda f.\lambda n.Cond(n=0, True, f(n-1))$

substituting "H₂ odd" for even
odd = H₁ (H₂ odd)
= H odd where H =
$$\lambda f. H_1 (H_2 f)$$

 $\Rightarrow odd = Y H$

Self-application and Paradoxes

Self application, i.e., (x x) is dangerous.

Suppose: $u \equiv \lambda y$. *if* (y y) = a *then* b *else* a What is (u u)? $(u u) \rightarrow if (u u) = a$ *then* b *else* a

Contradiction!!!

Any semantics of λ -calculus has to make sure that functions such as u have the meaning \perp , i.e. "totally undefined" or "no information".

Self application also violates every type discipline.

September 16, 2015

λ -calculus with Combinator Y

Recursive programs can be translated into the λ -calculus with constants and combinator Y. However,

- Y violates every type discipline
- translation is messy in case of mutually recursive functions
 - extend the λ -calculus with recursive let blocks.

The λ_{let} Calculus

 \Rightarrow

MIT OpenCourseWare http://ocw.mit.edu

6.820 Fundamentals of Program Analysis Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.