What does my program mean?

Armando Solar Lezama
 Computer Science and Artificial Intelligence Laboratory M.I.T.

Adapted from Arvind 2010. Used with permission.
September 16, 2015

Meaning of a term

- The semantics must distinguish between terms that should not be equal, i.e., if

$$
\begin{aligned}
& 0 \equiv \lambda x \cdot \lambda y \cdot y ; \quad 1 \equiv \lambda x \cdot \lambda y \cdot x y ; \quad 2 \equiv \lambda x \cdot \lambda y \cdot x(x y) \\
& \text { Then } \lambda x \cdot \lambda y \cdot y \neq \lambda x \cdot \lambda y \cdot x y \neq \lambda x \cdot \lambda y \cdot x(x y)
\end{aligned}
$$

- The semantics must equate terms that should be equal, i.e., the terms corresponding to (plus 01) and 1 must have the same meaning
- A semantics is said to be fully abstract if two terms have different meaning according to the semantics then there exists a term that can tell them apart

In the λ-calculus it is possible to define the meaning of a term almost syntactically

Information content of a term

Instantaneous information: A term obtained by replacing each redex in a term by \perp where \perp stands for no information

Term
Instantaneous information

$$
\begin{aligned}
& (\lambda q \cdot \lambda p . p(q a))(\lambda z . z) \\
\rightarrow & \lambda p \cdot p((\lambda z . z) a)) \\
\rightarrow & \lambda p \cdot p \text { a }
\end{aligned}
$$

β-reductions monotonically increase information
The meaning of a term is the maximum information that can be obtained by β-reductions

Is the meaning of a term simply its normal form?

- Yes, but...
- What if a term doesn't have a normal form?
- Is the meaning of such terms always \perp ?
- Consider $\Omega=(\lambda x . x \times$) ($\lambda x . \times x$)
- It doesn't have a normal form, and its meaning is \perp
- What about $\lambda \times . \times \Omega$?
- It doesn't have a normal form, but its meaning is $\lambda \mathrm{x} . \mathrm{x} \perp$
- What if a term has more than one normal form?
- It would have two meanings. BAD
- Not possible in the λ-calculus because of Confluence ...

Can the choice of redexes lead to different meaning?

- A term may have multiple redexes

$$
\begin{aligned}
& \text { 1. }((\lambda x \cdot M) A)((\lambda x \cdot N) B) \\
& \text { 2. }\left(\left(\lambda x \cdot--\rho_{1}\right)\left(\left(\lambda y \cdot----\rho_{2}\right) B\right)\right) \\
& ----\rho_{2}----
\end{aligned}
$$

- ρ_{1} followed by ρ_{2} does not necessary produce the same term as ρ_{2} followed by ρ_{1}
- Notice in the second example ρ_{1} can destroy or duplicate ρ_{2}.
- Can our choice of redexes lead us to produce terms that are clearly different (e.g., x versus $\lambda y . y$)?

Church-Rosser Property

A reduction system is said to have the Church-Rosser property, if $E \rightarrow E_{1}$ and $E \rightarrow E_{2}$ then there exits a E_{3} such that $\mathrm{E}_{1} \rightarrow \mathrm{E}_{3}$ and $\mathrm{E}_{2} \rightarrow \mathrm{E}_{3}$.

also known as CR or Confluence
If a system has the CR property then the divergence in terms due to the choice of redexes can be corrected

Church-Rosser Theorem

Theorem: The λ-calculus is CR.
(Martin-Lof \& Tate)

- No satisfactory proof of this theorem was given until 1970 (30 years later!)
- The proof is elegant
- Requires showing how two divergent terms can be brought together in finite number of steps
- strategy for choosing reductions

CR implies that if NF exists it is unique

Interpreters

An interpreter for the λ-calculus is a program to reduce λ-expressions to "answers".

Requires:

- the definition of an answer
- e.g., normal form?
- a reduction strategy
- a method to choose redexes in an expression

Definitions of "Answers"

- Normal form (NF): an expression without redexes
- Head normal form (HNF):
x is HNF
($\lambda x . E$) is in HNF if E is in HNF
($x E_{1} \ldots E_{n}$) is in HNF
Semantically most interesting- represents the information content of an expression
- Weak head normal form (WHNF):

An expression in which the left most application is not a redex.
x is in WHNF
($\lambda x . E$) is in WHNF
($x E_{1} \ldots E_{n}$) is in WHNF
Practically most interesting \Rightarrow "Printable Answers"

Two Common Reduction Strategies

- applicative order: right-most innermost redex aka call by value evaluation
- normal order: left-most (outermost) redex aka call by name evaluation

Computing a normal form

1. Every λ-expression does not have an answer i.e., a NF or HNF or WHNF

$$
\begin{gathered}
(\lambda \times . \times x)(\lambda \times . x \times)=\Omega \\
\Omega \rightarrow \Omega \rightarrow \Omega \rightarrow \ldots
\end{gathered}
$$

3. Even if an expression has an answer, not all reduction strategies may produce it

$$
(\lambda x . \lambda y \cdot y) \Omega
$$

leftmost redex: ($\lambda x . \lambda y . y) \Omega \rightarrow \lambda y . y$
innermost redex: $(\lambda x . \lambda y . y) \Omega \rightarrow(\lambda x . \lambda y . y) \Omega \rightarrow \ldots$

Normalizing Strategy

A reduction strategy is said to be normalizing if it terminates and produces an answer of an expression whenever the expression has an answer.
aka the standard reduction
Theorem: Normal order (left-most) reduction strategy is normalizing for the λ-calculus.

A Call-by-name Interpreter

Answers: WHNF
Strategy: leftmost redex

Apply the function before evaluating the arguments
$c n(E): \quad$ Definition by cases on E

$$
\mathrm{E}=\mathrm{x}|\lambda \mathrm{x} . \mathrm{E}| \mathrm{E} \mathrm{E}
$$

$$
\operatorname{cn}([[x]])=x
$$

$$
\operatorname{cn}([[\lambda x . E]]) \quad=\lambda x . E
$$

$$
\operatorname{cn}\left(\left[\left[\mathrm{E}_{1} \mathrm{E}_{2}\right]\right]\right)=\operatorname{let} \mathrm{f}=\operatorname{cn}\left(\mathrm{E}_{1}\right)
$$

in case fof

$$
\lambda x \cdot E_{3}=\operatorname{cn}\left(E_{3}\left[E_{2} / \mathrm{x}\right]\right)
$$

$$
=f E_{2}
$$

Meta syntax

A Call-by-value Interpreter

Answers: WHNF
Strategy: rightmost-innermost redex but not inside a λ-abstraction

Evaluate the argument before applying the function
$c v(E): \quad$ Definition by cases on E

$$
E=x|\lambda x . E| E E
$$

$$
\begin{aligned}
& \operatorname{cv}([[x]])=x \\
& \operatorname{cv}([[\lambda x . E]]) \quad=\lambda x . E \\
& \operatorname{cv}\left(\left[\left[\mathrm{E}_{1} \mathrm{E}_{2}\right]\right]\right)=\text { let } \mathrm{f}=\operatorname{cv}\left(\mathrm{E}_{1}\right) \\
& a=c v\left(E_{2}\right) \\
& \text { in case } f \text { of } \\
& \lambda x . E_{3}=\operatorname{cv}\left(E_{3}[a / x]\right) \\
& -\quad=\mathrm{fa}
\end{aligned}
$$

Coding this in Haskell with Algebraic Data Types

Algebraic types

- Algebraic types are tagged unions of products
- Example

- new "constructors" (a.k.a. "tags", "disjuncts", "summands")
- a k-ary constructor is applied to k type expressions

Examples of Algebraic types

```
data Bool = False | True
data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
data Maybe a = Nothing | Just a
data List a = Nil | Cons a (List a)
data Tree a = Leaf a | Node (Tree a) (Tree a)
data Tree' a b = Leaf' a
                        | Nonleaf' b (Tree' a b) (Tree' a b)
data Course = Course String Int String (List Course)
name number description pre-reqs
```


Constructors are functions

- Constructors can be used as functions to create values of the type

```
let
    11 :: Shape
    l1 = Line e1 e2
    t1 :: Shape = Triangle e3 e4 e5
    q1 :: Shape = Quad e6 e7 e8 e9
in
```

where each "eل" is an expression of type "Pnt"

Pattern-matching on algebraic types

- Pattern-matching is used to examine values of an algebraic type

```
anchorPnt :: Shape -> Pnt
anchorPnt s = case s of
\begin{tabular}{|c|c|c|}
\hline Line & p1 p2 & -> p1 \\
\hline Triangle & p3 p4 p5 & p3 \\
\hline Quad & p6 p7 p8 p9 & p \\
\hline
\end{tabular}
```

- A pattern-match has two roles:
- A test: "does the given value match this pattern?"
- Binding ("if the given value matches the pattern, bind the variables in the pattern to the corresponding parts of the value")
- Clauses are examined top-to-bottom and left-to-right for pattern matching

Big Step Semantics

Big Step Operational Semantics

- Model the execution in an abstract machine
- Basic Notation: Judgments Some alternative notations: $\Downarrow, \longrightarrow, \cdots \gtrdot, \Rightarrow$, etc \ldots〈configuration〉 \rightarrow result
- describe how a program configuration is evaluated into a result
- the configuration is usually a program fragment together with any state.
- Basic Notation: Inference rules
- define how to derive judgments for an arbitrary program
- also called derivation rules or evaluation rules
- usually defined recursively

$$
\frac{\left\langle c_{1}\right\rangle \rightarrow r_{1} \quad\left\langle c_{2}\right\rangle \rightarrow r_{2} \ldots\left\langle c_{k}\right\rangle \rightarrow r_{k}}{\langle\text { configuration }\rangle \rightarrow \text { result }}
$$

What evaluation order is this?

$$
\overline{x \rightarrow x}
$$

$$
\overline{\lambda x . e \rightarrow \lambda x . e}
$$

$$
\frac{e_{1} \rightarrow \lambda x \cdot e_{1}^{\prime} \quad e_{1}^{\prime}\left[\alpha\left(e_{2}\right) / x\right] \rightarrow e_{3}}{e_{1} e_{2} \rightarrow e_{3}}
$$

Call by Name

$$
\begin{aligned}
\operatorname{cn}([[\mathrm{x}]])= & \mathrm{x} \\
\mathrm{cn}([[\lambda \mathrm{x} \cdot \mathrm{E}]])= & \lambda x \cdot \mathrm{E} \\
\operatorname{cn}\left(\left[\left[\mathrm{E}_{1} \mathrm{E}_{2}\right]\right]\right)= & \text { let } \mathrm{f}=\mathrm{cn}\left(\mathrm{E}_{1}\right) \\
& \text { in case fof of } \\
& \lambda x \cdot \mathrm{E}_{3}=\mathrm{cn}\left(\mathrm{E}_{3}\left[\mathrm{E}_{2} / \mathrm{x}\right]\right) \\
& -\quad=\mathrm{fE}_{2}
\end{aligned}
$$

Do these semantics coincide?

What evaluation order is this?

$$
\overline{x \rightarrow x}
$$

$$
\overline{\lambda x . e \rightarrow \lambda x . e}
$$

$$
\frac{e_{1} \rightarrow \lambda x . e_{1}^{\prime} \quad e_{2} \rightarrow e_{2}^{\prime} \quad e_{1}^{\prime}\left[\alpha\left(e_{2}^{\prime}\right) / x\right] \rightarrow e_{3}}{e_{1} e_{2} \rightarrow e_{3}}
$$

Call by Value

$$
\begin{aligned}
\operatorname{cv}([[\mathrm{x}]])= & \mathrm{x} \\
\operatorname{cv}([[\lambda x . \mathrm{E}]])= & \lambda x . \mathrm{E} \\
\operatorname{cv}\left(\left[\left[\mathrm{E}_{1} \mathrm{E}_{2}\right]\right]\right)= & \text { let } \mathrm{f}=\operatorname{cv}\left(\mathrm{E}_{1}\right) \\
& \mathrm{a}=\operatorname{cv}\left(\mathrm{E}_{2}\right) \\
& \text { in case fof } \\
& \lambda x . \mathrm{E}_{3}=\operatorname{cv}\left(\mathrm{E}_{3}[\mathrm{a} / \mathrm{x}]\right) \\
& \quad-\quad=\mathrm{fa}
\end{aligned}
$$

Recursion and the Y Combinator

Recursion and Fixed Point Equations

Recursive functions can be thought of as solutions of fixed point equations:

$$
\text { fact }=\lambda n . \text { Cond }(\text { Zero } ? n) 1(\text { Mul } n(\text { fact }(\text { Sub } n 1)))
$$

Suppose

$$
\mathrm{H}=\lambda \mathrm{f} . \lambda \mathrm{n} \text {. Cond (Zero? n) } 1(\text { Mul } \mathrm{n}(\mathrm{f}(\text { Sub } \mathrm{n} 1)))
$$

then

$$
\text { fact }=\mathrm{H} \text { fact }
$$

fact is a fixed point of function H !

Fixed Point Equations

$$
f: D \rightarrow D
$$

A fixed point equation has the form

$$
f(x)=x
$$

Its solutions are called the fixed points of f because if x_{p} is a solution then

$$
x_{p}=f\left(x_{p}\right)=f\left(f\left(x_{p}\right)\right)=f\left(f\left(f\left(x_{p}\right)\right)\right)=\ldots
$$

We want to consider fixed-point equations whose solutions are functions, i.e., sets that contain their function spaces
domain theory, Scottary, ...

An example

Consider

$$
\begin{aligned}
& \mathrm{f} \mathrm{n}=\text { if } \mathrm{n}=0 \text { then } 1 \\
& \text { else (if } \mathrm{n}=1 \text { then } \mathrm{f} 3 \text { else } \mathrm{f}(\mathrm{n}-2)) \\
& \mathrm{H}=\lambda \mathrm{f} \cdot \lambda \mathrm{n} \cdot \operatorname{Cond}(\mathrm{n}=0,1 \text {, Cond }(\mathrm{n}=1, \mathrm{f} 3, \mathrm{f}(\mathrm{n}-2))
\end{aligned}
$$

Is there an f_{p} such that $f_{p}=H f_{p}$?

$$
\begin{array}{|lll}
\hline f 1 \mathrm{n} & =1 & \begin{array}{l}
\text { if } \mathrm{n} \text { is even } \\
\text { otherwise }
\end{array} \\
& =\perp & \\
\hline \mathrm{f} 2 \mathrm{n} & =1 & \begin{array}{l}
\text { if } \mathrm{n} \text { is even } \\
\\
\end{array} \\
& \text { otherwise }
\end{array}
$$

f1 contains no arbitrary information and is said to be the least fixed point (Ifp)

Under the assumption of monotonicity and continuity least fixed points are unique and computable

Computing a Fixed Point

- Recursion requires repeated application of a function
- Self application allows us to recreate the original term
- Consider: $\Omega=(\lambda x . \times x)(\lambda x . x \times)$
- Notice β-reduction of Ω leaves $\Omega: \Omega \rightarrow \Omega$
- Now to get $F(F(F(F \ldots)))$ we insert F in Ω :

$$
\Omega_{F}=(\lambda x . F(x x))(\lambda x . F(x x))
$$

which β-reduces to:

$$
\begin{aligned}
\Omega_{\mathrm{F}} & \rightarrow F(\lambda x . F(x \times x))(\lambda x . F(x \times x)) \\
& \rightarrow F \Omega_{\mathrm{F}} \rightarrow F\left(F \Omega_{\mathrm{F}}\right) \rightarrow F\left(F\left(F \Omega_{\mathrm{F}}\right)\right) \rightarrow \ldots
\end{aligned}
$$

- Now λ-abstract F to get a Fix-Point Combinator:

$$
Y \equiv \lambda f \cdot(\lambda x .(f(x x)))(\lambda x .(f(x x)))
$$

Y : A Fixed Point Operator

$$
Y \equiv \lambda f \cdot(\lambda x \cdot(f(x x)))(\lambda x \cdot(f(x x)))
$$

Notice

$$
\begin{aligned}
Y F & \rightarrow(\lambda x . F(x x))(\lambda x . F(x x)) \\
& \rightarrow F(\lambda x . F(x \times))(\lambda x . F(x x)) \\
& \rightarrow F(Y F)
\end{aligned}
$$

$$
F(Y F)=Y F
$$

$(Y F)$ is a fixed point of F
Y computes the least fixed point of any function!
There are many different fixed point operators.

Mutual Recursion

odd $n=$ if $n==0$ then False else even ($n-1$)
even $n=$ if $n==0$ then True else odd ($n-1$)

$$
\begin{aligned}
& \text { odd }=\mathrm{H}_{1} \text { even } \\
& \text { even }=\mathrm{H}_{2} \text { odd } \\
& \text { where }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{H}_{1}=\lambda f . \lambda n . \text { Cond }(\mathrm{n}=0, \text { False, } \mathrm{f}(\mathrm{n}-1)) \\
& \mathrm{H}_{2}=\lambda \mathrm{f} . \lambda n . \text { Cond }(\mathrm{n}=0 \text {, True, } \mathrm{f}(\mathrm{n}-1))
\end{aligned}
$$

substituting " H_{2} odd" for even Can we express odd $\quad=\mathrm{H}_{1}\left(\mathrm{H}_{2}\right.$ odd $)$
$=\mathrm{H}$ odd where $\mathrm{H}=\lambda \mathrm{f} . \mathrm{H}_{1}\left(\mathrm{H}_{2} \mathrm{f}\right)$
\Rightarrow odd $\quad=\mathrm{Y} H$

Self-application and Paradoxes

Self application, i.e., $(x x)$ is dangerous.
Suppose:

$$
\mathrm{u} \equiv \lambda \mathrm{y} . \text { if }(\mathrm{y} \mathrm{y})=\mathrm{a} \text { then } \mathrm{b} \text { else } \mathrm{a}
$$

What is ($u \mathrm{u}$) ?

$$
(\mathrm{u} u) \rightarrow i f(\mathrm{u} u)=\mathrm{a} \text { then } \mathrm{b} \text { else } \mathrm{a}
$$

Contradiction!!!

Any semantics of λ-calculus has to make sure that functions such as u have the meaning \perp, i.e. "totally undefined" or "no information".

Self application also violates every type discipline.

λ-calculus with Combinator Y

Recursive programs can be translated into the λ-calculus with constants and combinator Y . However,

- Y violates every type discipline
- translation is messy in case of mutually recursive functions
extend the λ-calculus with recursive let blocks.

The $\lambda_{\text {let }}$ Calculus

MIT OpenCourseWare
http://ocw.mit.edu

6.820 Fundamentals of Program Analysis

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

