
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.820 Foundations of Program Analysis

Problem Set 3 Out: October 10, 2015
Due: October 21, 2015 at 5:00 PM

The largest part of this problem set involves proving a theorem with Coq, like in the first two
problems in Problem Set 2.

Please Remember: The problem set is to be handed in before 5 PM on the day it is due. As
with Problem Set 2, please turn in one .tgz or .zip file containing all of the files you produce for
this problem set. The questions that aren’t about writing Coq code should be answered in a PDF
or text file based on your preference (and it’s possible we could be talked into permitting other
formats).

As usual, we expect you to do your own Coq coding. It is important to think through your definitions
and proof strategies to some extent, before starting to write Coq code, or you can easily paint yourself
into a corner where you have little intuition about how to proceed. We recommend starting out
by thinking individually at a conceptual level about the design of your type system and outline of
your proof strategy. However, collaborating with other students in the class at a conceptual level
is encouraged, so long as the PDF or text file you hand in lists your collaborators. You’ll learn
the most if you spend some time on your own first, thinking about these issues; but working with
a group to settle on a proof structure is more educational than getting wedged somewhere! You
should still type your Coq proof solutions yourself, without someone else looking over
your shoulder guiding you. Group collaboration is only meant to help you understand
the informal structure of a proof and/or figure out particular general tricks for using
tactics to implement a proof step that makes sense on paper.

We encourage you to start the assignment early and not be shy about posting questions on Piazza
as they arise! Use your judgment about whether such questions give away too many solution details,
so that they should be marked as private.

2 6.820 Problem Set 3

Problem 1 Understanding the language (10 points)

Consider the following language:

e := x | newτ | e; e | let x = e in e | e.f | e.f := e

This is a simple model of an imperative language where you can create references of type τ , where
τ can only be a mutable record, and you can mutate the fields of those records. Now, in our simple
model language, we can assume that garbage collection takes care of reclaiming objects that are no
longer necessary, but garbage collection can sometimes be expensive. In particular, there are many
situations where an application needs to allocate a lot of short lived objects that are only necessary
within some local context, so it would be great if the garbage collector didn’t have to bother with
those objects; if we could just store them in some kind of local arena that gets automatically
deallocated once the program exits that context. For this exercise we are going to introduce such
a mechanism into the language. We do this by introducing two new kinds of expressions:

e := newLτ | context e

The expression context e introduces a new execution context, creates a new arena, executes the
expression e and returns the value of evaluating e. Any object allocated in e using the special
newLτ allocator will be allocated in this new arena, and the arena will be deallocated upon exiting
the new context. Contexts can be nested, and in that case, local objects allocated with newLτ will
be associated with the nearest context to the allocation site.

Example 1 For example, consider the following code.

let x = newτ
in context (let y = newLτ in y.f = newτ ;x.f = y.f) ;x.f

In the program above, x is assigned a new object, and then inside a new context, we allocate a local
object y . We then allocate a new global object and store it in y.f , and then copy that reference
from y.f to x.f . After exiting the context, the local object will have been reclaimed, but x.f still
holds the reference to the global object allocated inside the reference.

The semantics of this scheme can be formalized by the following rules. First, the local reduction
rules need to be defined in terms of a heap, as well as some additional program state to keep track
of contexts. Local reduction rules act on a triple (h, cid, oid, e) where h is the heap, cid is an id of
the current context, oid is an id for the next object, and e is the local expression to be transformed.

(h, cid, oid, newτ)→ (h : (g (oid)← ∅), cid, oid+ 1, g (oid))
(h, cid, oid, newLτ)→ (h : (loc (oid, cid)← ∅), cid, oid+ 1, loc (oid, cid))
(h, cid, oid, let x = v in e)→ (h, cid, oid, e [v/x])
(h, cid, oid, v; e)→ (h, cid, oid, e)
(h, cid, oid, v.f)→ (h, cid, oid, h [v, f])
(h, cid, oid, v1.f := v2)→ (update(h, v1, f, v2), cid, oid, v2)
(h, cid, oid, context e)→ (h, cid+ 1, oid, inside e)
(h, cid, oid, inside v)→ (cleanup(h, cid), cid− 1, oid, v)

6.820 Problem Set 3 3

A few things to note about the rules. First, addresses generated by newτ and newLτ are different.
Global addresses are created through a constructor g and local addresses are wrapped into a loc
constructor that includes the id of the current context. Allocation also registers the new addresses
into the heap. Reading and writing from fields should fail if the addresses are not already registered
in the heap. The local rules also introduce a new syntactic element inside which indicates that
we are currently evaluating inside a context. Once evaluation inside the context completes, we
revert back to the previous context and clean up from the heap any local addresses from context
cid. At this point the notation is still somewhat informal, but we make this formal in the coq file
distributed with the assignment.

Contexts are defined recursively by the following grammar:

H := � | H; e | let x = H in e | H.f | H.f := e | v.f := H | inside H

The top level small-step evaluation rule is

(h, cid, oid, e)→ ′ ′ ′ ′
(h , cid , oid , e)

(h, cid, oid, H [e])→ (h′ , cid′ , oid′ , H [e′])

Part a: (10 points) The file ps3-semantics.v contains all the semantics definitions described so
far. In the file ps3-yourcode.v use the semantics in order to prove that the program in Example 1
can be evaluated to a value of the form g(n) for some n.

Problem 2 Defining a simple type system (60 points)

One problem with the language as described so far is that one could write programs that end up
with dangling pointers. For example, consider the following program.

Example 2

let x = newτ
in context (let y = newLτ in x.f = y) ;x.f.f := x.f

This code will lead to a problem, because the object y will be deallocated, so when we try to modify
the object outside the context, evaluation will fail.

Our goal for this part of the problem set is going to be to implement a type system that will help
avoid the problem in the previous example. A strawman solution to the problem is to have two
types: Local and Global . The idea is that new objects created with newL will be of type Local
and objects created with new are going to be of type Global . In order to avoid any dangling
references, we could disallow references from Global objects to Local objects. A problem with this
approach is that the notion of locality is relative; in one context an object may be local, but from a
nested context it is global, but it still needs to be distinguished from the truly global objects. We
will achieve this by defining a type Locali where i is an offset from the current local context. The
typing rules are as follows.

4 6.820 Problem Set 3

Γ(x)=τ Γ,c`e1:τ1 Γ;x:τ1,c`e2
Γ,c`x :τ Γ,c`new:Global Γ,c` let x:τ1=e1 in e2 :τ2

Γ,c`e:τ Γ
Γ,c`e.f :τ

`e :τ Γ,c`e′:τ
Γ`e.f :=e′ :τ Γ,c`newL:Local0

updateTypes(Γ),(c+1)`e:Global Γ,c` e1:τ ′ Γ,c` e2:τ
Γ,c` context e :Global Γ,c` e1;e2:τ

updateTypes(Γ),(c+1)`e:Global c=t+cid
Γ,c` inside e:Global Γ,c`g(n):Global Γ,c`loc(n,cid):Localt

updateTypes finds any type Locali in Γ and replaces it with Locali+1. The last three constructs
correspond to constructs that do not appear in the original programs but are introduced by the
small step semantics.

Part a: (10 points) The file ps3-types.v contains a skeleton of the type definitions listed above.
Your goal is to complete this type system to match the above definitions.

Part b: (10 points) In the same file create 3 small programs in the language and prove that they
type check according to your typing rules. Collectively your 3 programs should exercise all the
typing rules.

Part c: (40 points) In the same file, there is a preservation theorem which you need to prove for
this type system.

Problem 3 Extending the type system (30 points)

One problem with the type system as defined so far is that it is too restrictive. Local objects can
only point to other local objects in the same context. From the semantics, though, it should be
clear that references from local objects to global objects would not pose any problems. From this
intuition, it would seem that the following sub-typing relationship makes sense for the type system.

Global <: Locali

i > j

Locali <: Localj

Together with the standard rule for subtyping

Γ ` ′ ′
e : τ τ <: τ

Γ ` e : τ

6.820 Problem Set 3 5

This means that I can always use a global object in place of a local object, and I can always use
an object from an enclosing context in place of an object local to the current context.

Part a: (5 points) Is this claim true? (hint, the answer is no) If no, show an example of a program
that would typecheck thanks to this subtyping relation but would not execute correctly according
to the semantics.

Part b: (15 points) One way to fix the problem is to have two kinds of fields

• sametype These fields always point to objects of the exact same type as the object to which
they belong, so if e is Local2 e.fs is also of type Local2 if field fs is a sametype field. Just
like in the original type system.

• supertype These fields can point to objects in the same context or to objects in enclosing
contexts or the global context.

In the file ps3-yourcode.v, define a formalization of the new type system using the isSameType

predicate provided in ps3-types.v. Your typing rules should be defined under typeCheckBetter to
distinguish them from the ones from Problem 2.

Part c: (10 points) In the same file create 3 small programs in the language and prove that they
type check according to your typing rules. Collectively your 3 programs should exercise the new
typing rules.

Part d: (20 points) BONUS: For an additional 20 points, prove a preservation theorem for your
new type system.

MIT OpenCourseWare
http://ocw.mit.edu

6.820 Fundamentals of Program Analysis
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

