
Beyond Verification 

Software Synthesis 

1



What do we mean by synthesis 

o We want to get code from high-level specs 

- Python and VB are pretty high level, why is that not synthesis? 

 

o Support compositional and incremental specs 

- Python and VB don’t have this property 

• If I don’t like the way the python compiler/runtime is implementing 

my program, I am out of luck. 

- Logical specifications do 

• I can always add additional properties that my system can satisfy 

- Specs are not only functional 

• Structural specifications play a big role in synthesis 

• How is my algorithm going to look like. 

2



The fundamental challenge 

o The fundamental challenge of synthesis is dealing with 

an uncooperative environment 

- For reactive systems, people model this as a game 

• For every move of the adversary (ever action of the environment), 

  the synthesized program must make a counter-move that keeps the 

system working correctly. 

• The game can be modeled with an automata 

3



The fundamental challenge 

o The fundamental challenge of synthesis is dealing with 

an uncooperative environment 

- If we are synthesizing functions, the environment provides the 

inputs 

• i.e. whatever we synthesize must work correctly for all inputs 

 

- This is modeled with a doubly quantified constraint 

• E.g. if the spec is given as pre and post conditions, we have 

 

∃ 𝑃 ∀ 𝜎   𝜎 ⊨ 𝑝𝑟𝑒 ⇒ (𝜎 ⊨ 𝑊𝑃(𝑃, 𝑝𝑜𝑠𝑡 )) 

 

- What does it mean to quantify over the space of programs? 

4



Quantifying over programs 

o Synthesis in the functional setting can be seen as  

o curve fitting 

- i.e. we want to find a curve that satisfies some properties 

 

o It’s very hard to do curve fitting when you have to 

consider arbitrary curves 

- Instead, people use parameterized families of curves 

- This means you quantify over parameters instead of over 

functions 

 

o This is the first fundamental idea in software synthesis 

- People call these Sketches, scaffolds, templates, … 

- They are all the same thing 

 
5



The Sketch Language 

Define parameterized programs explicitly 

- Think of the parameterized programs as “programs with 

holes” 

Example: Hello World of Sketching 

spec: 
 
int foo (int x)  
{ 
    return x + x; 
}  

sketch: 
 
int bar (int x) implements foo  
{ 
    return x * ??; 
}  

Integer Hole 

6



Integer Holes  Sets of Expressions 

o Expressions with ??  == sets of expressions 

- linear expressions  x*?? + y*??  

- polynomials   x*x*?? + x*?? + ??  

- sets of variables   ?? ? x : y  

 

7



Integer Holes  Sets of Expressions 

o Example: Least Significant Zero Bit 

- 0010 0101   0000 0010 

 

 

 

 

 
 

 

o Trick:  

- Adding 1 to a string of ones turns the next zero to a 1 

- i.e. 000111 + 1 = 001000 

int W = 32; 
 

bit[W] isolate0 (bit[W] x) {      // W: word size 
 bit[W] ret = 0; 
 for (int i = 0; i < W; i++)   
  if (!x[i]) { ret[i] = 1; return ret;  }  
} 
 

!(x + ??) & (x + ??)  
!(x + 1) & (x + 0)  

!(x + 0) & (x + 1)  

!(x + 1) & (x + 0xFFFF)  

!(x + 0xFFFF) & (x + 1) 

 

8



Integer Holes  Sets of Expressions 

o Example: Least Significant Zero Bit 

- 0010 0101   0000 0010 

 

 

 

 

 
 

int W = 32; 
 

bit[W] isolate0 (bit[W] x) {      // W: word size 
 bit[W] ret = 0; 
 for (int i = 0; i < W; i++)   
  if (!x[i]) { ret[i] = 1; return ret;  }  
} 
 
bit[W] isolateSk (bit[W] x) implements isolate0 { 
  
 return !(x + ??) & (x + ??) ; 
} 
 

9



Integer Holes  Sets of Expressions 

o Expressions with ??  == sets of expressions 

- linear expressions  x*?? + y*??  

- polynomials   x*x*?? + x*?? + ??  

- sets of variables   ?? ? x : y  

 

o Semantically powerful but syntactically clunky 

- Regular Expressions are a more convenient way of defining sets 

10



Regular Expression Generators 

o {|   RegExp  |} 

 

o RegExp supports choice ‘|’ and optional ‘?’ 
- can be used arbitrarily within an expression 

• to select operands  {|  (x | y | z) + 1 |} 

• to select operators  {|  x (+ | -) y |} 

• to select fields  {| n(.prev | .next)? |} 

• to select arguments {| foo( x | y, z) |} 

 

o Set must respect the type system 
- all expressions in the set must type-check 

- all must be of the same type 

 

11



Least Significant One revisited 

o How did I know the solution would take the form 

 !(x + ??) & (x + ??) . 

 

o What if all you know is that the solution involves x, 
+, & and !. 

bit[W] tmp=0; 
{| x | tmp |} = {| (!)?((x | tmp) (& | +) (x | tmp | ??)) |}; 
{| x | tmp |} = {| (!)?((x | tmp) (& | +) (x | tmp | ??)) |}; 
return tmp; 

This is now a set of statements 
(and a really big one too) 

12



Sets of statements 

o Statements with holes = sets of statements 

 

o Higher level constructs for Statements too 

- repeat 

bit[W] tmp=0; 
repeat(3){ 
    {| x | tmp |} = {| (!)?((x | tmp) (& | +) (x | tmp | ??)) |}; 
} 
return tmp; 

13



repeat 

o Avoid copying and pasting 

- repeat(n){ s}   s;s;…s; 

 

- each of the n copies may resolve to a distinct stmt 

- n can be a hole too. 

 

 

 

 

 

o Keep in mind: 

- the synthesizer won’t try to minimize n 

n 

bit[W] tmp=0; 
repeat(??){ 
    {| x | tmp |} = {| (!)?((x | tmp) (& | +) (x | tmp | ??)) |}; 
} 
return tmp; 

14



Solving for a parameterized program 

o At a high level, two fundamental approaches: 

- Search and Test 

 

- Derive in one shot 

• Usually by means of abstraction. 

15



The CEGIS approach 

Synthesis reduces to constraint satisfaction 

 

 

 

Constraints are too hard for standard techniques 

- Universal quantification over inputs 

- Too many inputs 

- Too many constraints 

- Too many holes 

Q(x, φ) φ.        x. 

A  E 

16



Insight 

Sketches are not arbitrary constraint systems 

- They express the high level structure of a program 

 

A small number of inputs can be enough 

- focus on corner cases 

 

 

 

 

This is an inductive synthesis problem ! 

Q(x, φ) φ.     x in E. 

A  E 

where E  = {x1, x2, …, xk} 

17



Insert your favorite  

checker here 

CEGIS Synthesis algorithm 

{𝒊𝒏𝒊} 

∃𝒄  𝒔. 𝒕.  𝑪𝒐𝒓𝒓𝒆𝒄𝒕(𝑷𝒄, 𝒊𝒏𝒊) ∃𝒊𝒏  𝒔. 𝒕.  ¬𝑪𝒐𝒓𝒓𝒆𝒄𝒕(𝑷𝒄, 𝒊𝒏𝒊) 

Synthesize Check 𝒄 

𝒊𝒏 

18



CEGIS 

19



 A sketch as a constraint system 

int lin(int x){ 
   if(x > ??1) 
      return ??2*x + ??3; 
   else 
      return ??4*x; 
} 
 
void main(int x){ 
   int t1 = lin(x); 
   int t2 = lin(x+1); 
  
   if(x<4) assert t1 >=  x*x; 
  
   if(x>=3) assert t2-t1 == 1; 
} 

??2*x + ??3 

??4*x 

x > ??1 

??2*(x+1) + ??3 

??4*(x+1) 

x+1 > ??1 

x>=4 

x<3 

mux mux 

x*x 

- 

= 

1 

or 
>= 

or 

and 

20



Ex : Population count.  0010 0110  3 

x count 0 0 0 0 one 0 0 0 1 

+ 

mux 

count 

+ 

count 

mux 

+ 

count 

+ 

count 

mux 

mux 

F(x) =  

21



x 

& >> 

& 

+ 

mux 

x 

& >> 

& 

+ 

mux 

x 

& >> 

& 

+ 

mux 

x S(x,o) =  

22



MIT OpenCourseWare
http://ocw.mit.edu

6.820 Fundamentals of Program Analysis
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



