
6.821 Programming Languages Handout 
Fall 2002 

MASSACHVSETTS INSTITVTE OF TECHNOLOGY 
Department of Electrical Engineering and Compvter Science 

Problem Set 5 

Problem 1: State 

Do exercise 8.9 (a) and (b) on page 296 of the course notes. 

Problem 2: More State 

a.	 Give a translation of call-by-value FLAVARK! into call-by-value FLK!. You do not need to translate 
rec. 

b.	 Give a translation of call-by-reference FLAVARK! into call-by-value FLK!. You do not need to translate 
rec. 

Problem 3: Control 

Sam Antix decides to add a new exception handling primitive to FL! + {raise, trap}. He adds the following 
expression to the grammar of FL! + {raise, trap}: 

(handle I Eh Eb) 

Informally, Sam’s new expression is similar to 

(trap I Eh Eb). 

Both expressions evaluate Eh to a handler procedure and dynamically install the procedure as a handler 
for exception I . Then the body expression Eb is evaluated. If Eb returns normally, then the installed handler 
is removed, and the value returned is the value of Eb. 

However, if the evaluation of Eb reaches an expression 

(raise I E), 

then E is evaluated and the handler procedure is applied to the resulting value. With trap, this application 
is evaluated at the point of the raise expression. But with handle, the application is evaluated at the point 
of the handle expression. In particular, both the dynamic environment and continuation are inherited from 
the handle expression, not the raise expression. 

Here are a few example evaluations involving handle: 

(handle a (lambda (x) (+ 4000 x)) 
(handle b (lambda (x) (+ 300 (raise a (+ x 4)))) 

(handle a (lambda (x) (+ 20 x)) 
(+ 1 (raise b 2))))) 

⇒ 4006 

(handle a (lambda (x) (* x 10)) 
(+ 1 (raise a (+ 2 (raise a 4))))) 

⇒ 40 



a.	 Extend the denotational semantics of call-by-value FLK! + {raise, trap} with a valuation clause for 
handle. 

b. Give a desugaring of handle into FL! + {raise, trap, label, jump}. 

2



