
[]

6.821 Programming Languages Handout
Fall 2002

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Compvter Science

Problem Set 4

Problem 1: Flavors of Naming

Do exercise 7.12 on pages 237–238 of the course notes.

Problem 2: Compiling FLEX to FLAT

In this problem, you will design and implement an algorithm for translating one language into another. The
translation process considered here is actually used in compilers for languages with lexically scoped first-
class procedures. The goal of this problem is to develop a deeper understanding of first-class procedures
and lexical scoping.

Warning: this problem is difficult! Some suggestions:

• Please, do not leave this problem until the last minute.

•	 Do not attempt to code the solution until you have fully fleshed out your design. Doing otherwise is
a recipe for disaster. This problem is more about thinking and design than actual code—our solution
is about 60 lines of code and we do not expect yours to be significantly longer (and it may certainly
be shorter).

•	 We strongly suggest that you work with others on the design phase and even the coding phase. How-
ever, writeup should be done individually. Be sure to acknowledge others that you work with.

The two languages used in this problem, FLEX and FLAT, are both variants of call-by-value FL. The
kernel syntax for FLEX appears in figure 1; FLAT’s syntax is given in figure 2. In both languages, the primop
construct inherits its usual meaning from FLK. The primitive operators O supported in both languages are
the same as in FLK.

FLEX is just call-by-value FLK without the rec construct. FLEX also inherits the syntactic sugar of FL,
except for letrec and program, which are not supported.

FLAT is very similar to FLEX. They are the same except for the following differences:

• In FLAT, proc expressions can’t have any free variables. This is expressed in the grammar by the
restriction:

Free-Ids [(proc I E)] = ∅.
This restriction effectively makes all FLAT procedures independent of each other. In FLAT, it is pos
sible to straightforwardly “lift” all proc expressions in any program to the top-level. Such a lifting is
not possible in FLEX because proc expressions may have free variables that make them dependent on
their lexical position in the program.

•	 In FLAT, the let expression is a primitive form of the language — it does not desugar into other
forms.

• FLAT supports strict, immutable arrays called tuples:

– (tuple E1 . . . En) creates an n-tuple whose n components are the values of E1 . . . En.

[]

E ::=
|
|
|
|
|
|

E ::= L

L

I

(primop O E∗)

(proc I E)

(call Ep Ea)

(pair El Er)

(if Eb Et Ef)

[literal]
[variable-reference]

[primitive-application]
[abstraction]
[application]

[pairing]
[branch]

Figure 1: FLEX Kernel Syntax

|
|
|
|
|
|
|
|
|
|
|
|

I
(primop O E∗)
(proc I E)
(call Ep Ea)
(pair El Er)
(if Eb Et Ef)
(let ((I E)∗) Eb)
(tuple E∗)
(tuple-ref E N)
(tuple? E)
(tuple-length E)

[literal]

[variable-reference]

[primitive-application]

[abstraction]

[application]

[pairing]

[branch]

[let]

[tuple]

[tuple-ref]

[tuple-pred]

[tuple-length]

(tuple-append E1 E2) [tuple-append]

Free-Ids [(proc I E)] = ∅

Figure 2: FLAT Kernel Syntax

–	 (tuple-ref E N) evaluates E to an n-tuple t and returns the N th component of t, where in-
dices are 0-based. It is an error if E does not evaluate to an n-tuple or if N not an integer between
0 and n − 1, inclusive. For example:

(define tup
(tuple	 (primop + 1 2)

(primop * 3 4)
(primop = 7 8)))

(tuple-ref tup 0) ⇒ 3
(tuple-ref tup 1) ⇒ 12
(tuple-ref tup 2) ⇒ false
(tuple-ref tup 3) ⇒ error

– (tuple? E) is a predicate that indicates whether the value of E is a tuple.
–	 (tuple-length E) evaluates E to an n-tuple and returns its length. It is an error if E does not

evaluate to an n-tuple.
–	 (tuple-append E1 E2) evaluates E1 and E2 to n-tuples and returns a new n-tuple consisting of

the elements of the first tuple followed by the elements of the second tuple. It is an error if either
E1 or E2 does not evaluate to an n-tuple.

Not all tuple operations may be needed in writing your translator, but we provide them for complete
ness. All tuple operations except for tuple creation could have been primitives, but we have made
them special forms so that FLAT expressions are more readable.

2

Your assignment in this problem is to design and implement a semantics-preserving program translation that
translates FLEX expressions to FLAT expressions.

Your solution is required to be “semantics-preserving” in the following sense. Your solution must pro
duce expressions that compute the same result as the original expression in all cases where that result is not
a procedure or a data structure containing a procedure. (Your translator must always halt no matter what
its input is, so it cannot simply evaluate the input expression.)

Why is this worth doing? Because this particular program transformation is actually used in real com
pilers. The resulting programs contain only proc expressions with no free variables; therefore all the proc
expressions can be treated as top-level procedures. This transformation is used when compiling Pascal to
assembly language, and when compiling Scheme to C.

There are several important things to keep in mind about this problem:

•	 To design your translation, you must think about how a compiler represents procedure values (clo
sures). In a lexically scoped language, how are procedure values represented? What does a Pascal
compiler pass when a procedure value is passed as an argument? How is such a procedure value
called? When it is called, how does the body of the procedure access its environment?

•	 The purpose of this translation is to take a language with first-class procedure expressions and trans-
late it into a more restricted language. You should not restrict yourself to translating only proc ex
pressions. You can translate anything and everything in the language, as you see fit.

•	 Your translator only needs to handle closed expressions, that is, expressions that have no free variables.
In particular, you do not have to worry about top-level bindings of standard identifiers like +, left,
etc. The primop construct makes it possible to write interesting expressions without depending on the
bindings of standard identifiers. For example, your translator must handle the top-level expression
(primop + 1 2), but it does not need to handle the top-level expression (+ 1 2).

• The translation of an expression should not require examining the result of translating subexpressions.

•	 The FLAT code produced by your translator need not be particularly efficient. You needn’t worry
about optimizing the output code.

•	 The translator itself does not need to be particularly efficient. When writing the translator, emphasize
clarity rather than efficiency. Make the translator as simple as possible.

•	 Your translator must return a FLAT expression for every closed FLEX expression. In particular, your
translator must always terminate, even when applied to FLEX expressions that might not terminate.

•	 It is crucial to handle the case where a procedure is returned outside the scope of the declaration of
one of the variables referenced in its body. For example, consider:

(let ((make-subtracter (proc n (proc x (primop - x n)))))
(let ((dec (make-subtracter 1)))

(dec 5)))

When make-subtracter is applied to 1, it returns a procedure created by the expression (proc x
(primop - x n)). The returned procedure somehow “remembers” that the n in the body means 1.
Implementing this “remembering” behavior is at the heart of the problem.

• You need to correctly transform the following FLEX expressions:

FLEXT F LAT F LAT
(primop procedure? (proc x x)) =⇒ ⇒ true

FLEXT F LAT F LAT
(primop procedure? 1) =⇒ ⇒ false

Tools. Did we mention tools? Yes, well, we’re providing the following pieces of software, all conve
niently located in the file ps4.scm:

3

•	 Definition of the abstract syntax: since the languages are so similar, we will use the same exp datatype
for both.

• A function for computing the free variables of FLEX and FLAT expressions: free-vars.

•	 Restriction checker, verifies that a FLAT expression contains only proc expressions which have no
free variables: non-scoped?.

• Two language evaluators: flex-eval and flat-eval.

•	 The other usual stuff: flex-parse, flat-parse, flex-unparse, flat-unparse, and two top-levels:
flex-repl and flat-repl.

•	 Two testing procedures, test-translate and test-loop, that use your translate procedure. test-
translate will prompt for a single FLEX expression and produce the resulting FLAT expression from
your translator. test-loop will perform the same task and prompt for another FLEX expression.

•	 A lifter procedure lift that when applied to any FLAT expression, will lift all proc expressions to the
top-level. You can use this to see what happens in a compiler when the procedures are lifted to the
top-level. The top-level is represented by the FLAT program (program (I E)∗ Eb). The bindings
for the identifiers are mutually recursive so that procs within the body of other procs are correctly
handled.

You can use lift-loop-on-flex to try lifting FLEX expressions, but it will complain if it is not safe to
lift the procs in the expression. You can use lift-loop-with-translate to enter FLEX expressions,
have them translated by your translator, and then lifted. If all goes well, you should see a program
that binds some procs followed by some calls involving those procs.

You should submit the following results:

a. A brief explanation of how you translate proc abstractions, stating why your approach works.

b.	 A formal description of your translation rules. By this we mean something along the lines of the
HOOK to FL translator of Chapter 9 (figure 9.19 on page 356 of the course notes). That is, you should
formally define a translation function T that maps FLEX expressions (and, potentially, other argu
ments) to FLAT expressions. The rules should be the ones followed by your translation program, but
written in a form that makes your translation as clear as possible.

c.	 The code for your translation procedure, translate, and any auxiliary routines you define. translate
should map parsed FLEX expressions to parsed FLAT expressions.

d. Anything else you decide to change. (We don’t expect that other changes will be necessary.)

e.	 Test cases showing the behavior of your translate procedure. You should make sure your translate
procedure is semantics-preserving. You can use the language implementations to help test this, but
we only want to see unparsed expressions before and after translation.

4

