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6.821 Programming Languages Handout 
Fall 2002 

MASSACHVSETTS INSTITVTE OF TECHNOLOGY 
Department of Electrical Engineering and Compvter Science 

Problem Set 3 

Problem 1: Domains 

a. Let D1 and D2 be CPOs. 

(i) Prove that any continuous function from D1 to D2 is monotonic. 

(ii) The componentwise ordering of D1 × D2 is the relation �D1 ×D2 defined by: 

�d1, d2� �D1 ×D2 �d� 2� if and only if d1 �D1 d
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Prove that D1 × D2 is a CPO under the componentwise ordering. 

b. Let G and H be the following CPOs: 
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(i) Draw a Hasse diagram for the CPO (G × H). 

(ii)	 Draw a Hasse diagram for the CPO (H → G). This is the set of continuous functions from H to 
G, ordered as defined on page 195 of the course notes, “Function Domains”. You should write 
a function from H to G in an abbreviated form, as suggested by the notes. For example, the 
function with graph {�d, a�, �e, c�, �f, b�} can be written �a, c, b�. 

c. Let D be the following domain: 
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Let T be the set of total functions from D to D, let M be the set of monotonic functions from D to D, 
and let C be the set of continuous functions from D to D. 

(i) What is the size of T ? 

(ii) What is the size of M ? Give the graph of a function in (T − M ), if any. 

(iii) What is the size of C? Give the graph of a function in (M − C), if any. 



d.	 Let D be a pointed CPO, and let (D → D) be the CPO of continuous functions from D to D, ordered 
pointwise (this is the ordering defined on page 123 of the course notes, “Function Domains”). 

Define a function Y from (D → D) to D as follows: 

Y (f ) = f n(⊥D ) 
n≥0 

Prove that Y is a continuous function. 

Addendum: 

You may use the following lemmas in your proof. 

Lemma 1: Let D be a pointed CPO, let n be any non-negative integer, and let F be a chain of functions 
in (D → D). Then: 

( f )n(⊥D ) = f n(⊥D ) 
f ∈F f ∈F 

Lemma 2: Let D be a pointed CPO and let F be a chain of functions in (D → D). Then: 

( f n(⊥D )) = ( f n(⊥D )) 
n≥0 f ∈F f ∈F n≥0 

Problem 2: (Desugaring) 

Do exercise 6.3 (on page 162). 

Addendum: Part (c) asks for a closed form solution for the number of recs in a desugaring of a letrec 
with n bindings. Instead, you should write a recurrence equation for the number of recs in a desugaring of 
a letrec with n bindings. In particular, you do not need to write a closed form solution for this recurrence 
equation. 

Problem 3: (Substitution) 

Do exercise 6.12 (on page 187). 

Problem 4: (Operational semantics of FLK) 

Louis Reasoner has an idea for a new FLK command, (terminate E1 E2). If either E1 or E2 terminates 
with a value or an error, (terminate E1 E2) will also terminate with a value or an error. In evaluating 
terminate, we run one expression for one step, then run the other expression for one step, and so on. Louis 
initially worked out a few examples of how his new construct would work: 

(terminate 1 2) ⇒ 1 or 2 (implementation dependent)

(terminate 2 (rec x x)) ⇒ 2

(terminate 1 (call 3 0)) ⇒ 1 or error: can’t apply non-procedure (implementation dependent)

(terminate (rec x x) (/ 3 0)) ⇒ error: divide by zero

(terminate (rec x x) (rec x x)) ⇒ ⊥
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Louis is really excited about the terminate construct. His old implementation of FLK required him 
to reboot any time his program ran into an infinite loop. Although he hasn’t solved the halting problem, 
now he can guarantee not to have to reboot (excepting, of course, when his new-fangled operating system 
crashes) by testing his programs with terminate and his new (timer N ) construct. 

Louis defined the following transition rule(s) for timer: 

(timer N1) ⇒ (timer N2) 
where N1 > 1 [timer-countdown] 

and N2 = N1 − 1 

(timer 1) ⇒ #u [timer] 

Louis can now use the terminate construct to run his program might-go-infinite for exactly 1000 steps 
(where we consider each transition to be one step). The following expression will return the result of might-
go-infinite if it completes in under 1000 steps, otherwise it returns #u. 

(terminate (timer 1000) might-go-infinite ) 

Unfortunately, Louis set off for Hawaii before he was able to extend the FL Operational Semantics to 
include terminate. In his absence, you are asked to finish it up. 

a. Give the transition rules for terminate. 

b. Are your rules confluent? 

c. Show how the following expression would be evaluated using the rules above: 

(terminate (call (proc x (primop + x 2)) 5) 
(if (> 3 4) 

(rec x x) 
(proc y 1))) 
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