;3; CLOSURIZE.SCM
;33 A closure converter that makes flat closures for all LAMBDASs and FUNRECs.
;3> Writing CLOSURIZE-FUNREC is left as an exercise.

299

Nk =

299

8. (define (closurize node)

9. (cond ((application-node? node) (closurize-application node))

10. ((named-primop-node? 'procedure? node) (closurize-procedure? node))
11. ((lambda-node? node) (closurize-lambda node))

12. ((funrec-node? node) (closurize-funrec node))

13. (else (subnode-map closurize node))))

14. (define (closurize-application node)
15. '(CALL-CLOSURE ,(closurize (call-rator node))
1. ,@(map closurize (call-rands node))))

16. (define (closurize-procedure? node)
17. (PRIMOP CLOSURE? ,@(map closurize (primop-args node))))

18. (define (closurize-lambda node)
19. (let ((formals (lambda-formals node))
20. (body (lambda-body node))
21. (frees (free-vars node))
22. (closure-var (make-var (fresh-name 'closure))))
23. (PRIMOP CLOSURE
a. (LAMBDA (,closure-var ,@formals)
,(rewrite (list->set frees)
1. ;; Ref-rewriting procedure
2. (lambda (var)
3. (make-primop 'closure-ref
i. (list closure-var
ii. ;; Need 1+ to pass over code
iii. (1+ (position var frees)))))
4. ;; SET!-rewriting procedure
(lambda (var body)
6. (make-primop 'closure-set!
i. (list closure-var
ii. ;; Need 1+ to pass over code
iii. (1+ (position var frees))
iv. body)))
7. (closurize body)))

9]

b. ,@frees)))






