
1

Complex Pipelining

Arvind

Computer Science and Artificial Intelligence Laboratory

M.I.T.

Based on the material prepared by

Arvind and Krste Asanovic

6.823 L11-2
Arvind

Complex Pipelining: Motivation

Pipelining becomes complex when we want high
performance in the presence of

• Long latency or partially pipelined floating-point units

• Multiple function and memory units

• Memory systems with variable access time

October 19, 2005

6.823 L11-3
Arvind

Floating Point ISA

Interaction between the Floating point datapath
and the Integer datapath is determined largely
by the ISA

MIPS ISA
• separate register files for FP and Integer instructions

the only interaction is via a set of move
instructions (some ISA’s don’t even permit this)

• separate load/store for FPR’s and GPR’s but both
use GPR’s for address calculation

• separate conditions for branches
FP branches are defined in terms of condition codes

October 19, 2005

6.823 L11-4
Arvind

Floating Point Unit

Much more hardware than an integer unit

Single-cycle floating point unit is a bad idea - why?

• it is common to have several floating point units

• it is common to have different types of FPU's
Fadd, Fmul, Fdiv, ...

• an FPU may be pipelined, partially pipelined or not
pipelined

To operate several FPU’s concurrently the register
file needs to have more read and write ports

October 19, 2005

6.823 L11-5
Arvind

Function Unit Characteristics

fully

pipelined 1cyc

2 cyc 2 cyc

busy1cyc
 1cyc accept

partially

pipelined
 acceptbusy

Function units have internal pipeline registers

⇒ 	 operands are latched when an instruction
enters a function unit

⇒ 	 inputs to a function unit (e.g., register file)
can change during a long latency operation

October 19, 2005

6.823 L11-6
Arvind

Realistic Memory Systems

Latency of access to the main memory is
usually much greater than one cycle and often
unpredictable

Solving this problem is a central issue in computer
architecture

Common approaches to improving memory
performance

• separate instruction and data memory ports
⇒ no self-modifying code

• caches
single cycle except in case of a miss ⇒ stall

• interleaved memory
multiple memory accesses ⇒ bank conflicts

• split-phase memory operations
⇒ out-of-order responses

October 19, 2005

6.823 L11-7
Arvind

Complex Pipeline Structure

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPR’s
FPR’s

October 19, 2005

6.823 L11-8
Arvind

Complex Pipeline Control Issues

• Structural conflicts at the write-back stage due to
variable latencies of different function units

• Structural conflicts at the execution stage if some
FPU or memory unit is not pipelined and takes
more than one cycle

• Out-of-order write hazards due to variable
latencies of different function units

• How to handle exceptions?

October 19, 2005

6.823 L11-9
Arvind

Complex In-Order Pipeline

October 19, 2005

•
operations have same
latency to W stage
–

oversubscribed (one inst.
in & one inst. out every
cycle)

Commit
Point

PC
Inst.
Mem D Decode X1 W+

X2 WFadd X3FPRs X1

X2 Fmul X3

X2FDiv X3

Unpipelined
divider

How to prevent increased

slowing down single cycle

Delay writeback so all

Write ports never

GPRs

writeback latency from

integer operations?

Bypassing

X2
Data

X3Mem

October 19, 2005

6.823 L11-10
Arvind

Complex In-Order Pipeline

Commit
Point

PC
Inst.
Mem D Decode X1 X2

Data
Mem W+GPRs

X2 WFadd X3

X3

FPRs X1

X2 Fmul X3

X2FDiv X3

Unpipelined
divider

• Stall pipeline on long
latency operations, e.g.,
divides, cache misses

• Exceptions handled in
program order at commit
point

How should we handle
data hazards for very
long latency operations?

October 19, 2005

6.823 L11-11
Arvind

Superscalar In-Order Pipeline

• Fetch two instructions per
cycle; issue both
simultaneously if one is
integer/memory and other
is floating-point

• Inexpensive way of
increasing throughput,
examples include Alpha
21064 (1992) & MIPS
R5000 series (1996)

• Same idea can be extended
to wider issue by
duplicating functional units
(e.g. 4-issue UltraSPARC)
but register file ports and
bypassing costs grow
quickly

Commit
Point

2
PC

Inst.
Mem D

Dual
Decode X1 X2

Data
Mem W+GPRs

X2 WFadd X3

X3

FPRs X1

X2 Fmul X3

X2FDiv X3

Unpipelined
divider

12

Dependence Analysis

6.823 L11-13
Arvind

Types of Data Hazards

Consider executing a sequence of
rk ← (ri) op (rj)

type of instructions

Data-dependence
←
←

(r1) op (r2) Read-after-Writer3
(r3) op (r4) (RAW) hazard r5

Anti-dependence

r3 ← (r1) op (r2)
r1 ← (r4) op (r5)

Write-after-Read
(WAR) hazard

Output-dependence
r3 ← (r1) op (r2) Write-after-Write
r3 ← (r6) op (r7) (WAW) hazard

October 19, 2005

6.823 L11-14
Arvind

Detecting Data Hazards

Range and Domain of instruction i

R(i) = Registers (or other storage) modified by

instruction i
D(i) = Registers (or other storage) read by

instruction i

Suppose instruction j follows instruction i in the
program order. Executing instruction j before the
effect of instruction i has taken place can cause a

RAW hazard if R(i) ∩ D(j) ≠ ∅

WAR hazard if D(i) ∩ R(j) ≠ ∅

WAW hazard if R(i) ∩ R(j) ≠ ∅

October 19, 2005

6.823 L11-15

Register vs. Memory
Arvind

Data Dependence

Data hazards due to register operands can be

determined at the decode stage but

data hazards due to memory operands can be

determined only after computing the effective

address

store M[(r1) + disp1] ← (r2)

load r3 ← M[(r4) + disp2]

Does (r1 + disp1) = (r4 + disp2) ?

October 19, 2005

6.823 L11-16
Arvind

Data Hazards: An Example

I

I

I

I1 DIVD f6, f6, f4

2 LD

3 MULTD f4

4 DIVD

I

f2,

f2,

f8,

f10, f0,

45(r3)

f0,

f6, f2

5 SUBD

I

f6

6 ADDD f6, f8, f2

RAW Hazards
WAR Hazards
WAW Hazards

October 19, 2005

6.823 L11-17
Arvind

Instruction Scheduling

DIVD f6, f6,

f2, 45(r3)

f2,

f8,

f10, f0,

f6,

f0,

f6,

f8,

f4 I1

LDI2

MULTD f4 I3

DIVD f2I4

I5 SUBD f6

ADDD f2I6

Valid orderings:
in-order I1 I2 I3 I4 I5 I6

out-of-order I2 I1 I3 I4 I5 I6

out-of-order I1 I2 I3 I5 I4 I6

I6

I2

I4

I1

I5

I3

October 19, 2005

6.823 L11-18

Out-of-order Completion
Arvind

In-order Issue

Latency
I1 DIVD f6, f6, f4 4

I2 LD f2, 45(r3) 1

I3 MULTD f0, f2, f4 3

I4 DIVD f8, f6, f2 4

I5 SUBD f10, f0, f6 1

I6 ADDD f6, f8, f2 1

in-order comp 1 2 1 2 3 4 3 5 4 6 5 6

out-of-order comp 1 2 2 3 1 4 3 5 5 4 6 6

October 19, 2005

19

Five-minute break to stretch your legs

20

Scoreboard:

A Hardware Data Structure to

Detect Hazards Dynamically

6.823 L11-21
Arvind

CDC 6600 Seymour Cray, 1963

•	 A fast pipelined machine with 60-bit words
–	 128 Kword main memory capacity, 32 banks

•	 Ten functional units (parallel, unpipelined)
–	 Floating Point: adder, 2 multipliers, divider Image removed due to
–	 Integer: adder, 2 incrementers, ... copyright restrictions.

•	 Hardwired control (no microcoding)
•	 Dynamic scheduling of instructions using a

scoreboard
•	 Ten Peripheral Processors for Input/Output

–	 a fast multi-threaded 12-bit integer ALU

• Very fast clock, 10 MHz (FP add in 4 clocks)
Image removed due to • >400,000 transistors, 750 sq. ft., 5 tons,

copyright restrictions.	 150 kW, novel freon-based technology for
cooling

•	 Fastest machine in world for 5 years (until
7600)
–	 over 100 sold ($7-10M each)

October 19, 2005

6.823 L11-22
Arvind

IBM Memo on CDC6600

Thomas Watson Jr., IBM CEO, August 1963:
“Last week, Control Data ... announced the

6600 system. I understand that in the
laboratory developing the system there are

only 34 people including the janitor. Of
these, 14 are engineers and 4 are
programmers... Contrasting this modest
effort with our vast development activities,

I fail to understand why we have lost our
industry leadership position by letting
someone else offer the world's most
powerful computer.”

To which Cray replied: “It seems like Mr. Watson
has answered his own question.”

October 19, 2005

6.823 L11-23
Arvind

Complex Pipeline

October 19, 2005

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPR’s
FPR’s

Can we solve write
hazards without
equalizing all pipeline
depths and without
bypassing?

6.823 L11-24

When is it Safe to Issue an Arvind

Instruction?
Suppose a data structure keeps track of all the
instructions in all the functional units

The following checks need to be made before the
Issue stage can dispatch an instruction

• Is the required function unit available?

• Is the input data available? ⇒ RAW?

• Is it safe to write the destination? ⇒ WAR? WAW?

• Is there a structural conflict at the WB stage?

October 19, 2005

6.823 L11-25
Arvind

A Data Structure for Correct Issues
Keeps track of the status of Functional Units

Name Busy Op Dest Src1 Src2
Int
Mem
Add1
Add2
Add3
Mult1
Mult2
Div

The instruction i at the Issue stage consults this table

FU available? check the busy column
RAW? search the dest column for i’s sources
WAR? search the source columns for i’s destination
WAW? search the dest column for i’s destination

An entry is added to the table if no hazard is detected;
An entry is removed from the table after Write-Back

October 19, 2005

6.823 L11-26
ArvindSimplifying the Data Structure

Assuming In-order Issue
Suppose the instruction is not dispatched by the
Issue stage if a RAW hazard exists or the required
FU is busy, and that operands are latched by
functional unit on issue:

Can the dispatched instruction cause a

WAR hazard ?

NO: Operands read at issue

WAW hazard ?
YES: Out-of-order completion

October 19, 2005

6.823 L11-27
Arvind

Simplifying the Data Structure ...

No WAR hazard
⇒ no need to keep src1 and src2

The Issue stage does not dispatch an instruction in
case of a WAW hazard

⇒ a register name can occur at most once in the
dest column

WP[reg#] : a bit-vector to record the registers for
which writes are pending

These bits are set to true by the Issue stage and
set to false by the WB stage
⇒ Each pipeline stage in the FU's must carry the

dest field and a flag to indicate if it is valid
“the (we, ws) pair”

October 19, 2005

6.823 L11-28
Arvind

Scoreboard for In-order Issues

Busy[FU#] : a bit-vector to indicate FU’s availability.
(FU = Int, Add, Mult, Div)

These bits are hardwired to FU's.

WP[reg#] : a bit-vector to record the registers for which
writes are pending.

These bits are set to true by the Issue stage and set to
false by the WB stage

Issue checks the instruction (opcode dest src1 src2)
against the scoreboard (Busy & WP) to dispatch

FU available? Busy[FU#]
RAW? WP[src1] or WP[src2]
WAR? cannot arise
WAW? WP[dest]

October 19, 2005

6.823 L11-29

ArvindScoreboard Dynamics

Functional Unit Status Registers Reserved
Int(1) Add(1) Mult(3) Div(4) WB for Writes

t0 I1 f6 f6
t1 I2 f2 f6 f6, f2
t2 f6 f2 f6, f2 I2

t3 I3 f0 f6 f6, f0
t4 f0 f6 f6, f0 I1

t5 I4 f0 f8 f0, f8
t6 f8 f0 f0, f8 I3

t7 I5 f10 f8 f8, f10
t8 f8 f10 f8, f10 I5

t9 f8 f8 I4

t10 I6 f6 f6
t11 f6 f6 I6

I1 DIVD f6, f6, f4
I2 LD f2, 45(r3)
I3 MULTD f0, f2, f4
I4 DIVD f8, f6, f2
I5 SUBD f10, f0, f6
I6 ADDD f6, f8, f2

October 19, 2005

30

Thank you !

